مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

شبیه‌سازی عددی و بهینه‌سازی چند هدفی ایندیوسر پمپ گریز از مرکز

نویسندگان
1 رئیس دانشکه مهندسی خودرو
2 دانشکده مکانیک، دانشگاه علم و صنعت ایران
3 دکتری،دانشگاه علم و صنعت ایران
چکیده
ایندیوسرها قطعات مهمی هستند که برای دستیابی به عملکرد مکش بالاتر در بالادست پروانه اصلی پمپ گریز از مرکز نصب می‌‌گردند و با سرعت دورانی پروانه می‌‌چرخند. ایندیوسر با افزایش فشار ورودی به پمپ باعث بهبود عملکرد هیدرولیکی و طول عمر پمپ می‌گردد اما میزان بهبود شدیداً وابسته به پارامترهای هندسی ایندیوسر بوده و بنابراین بهینه‌سازی پارامترهای هندسی آن اجتناب ناپذیر می‌باشد. در پژوهش حاضر با در نظر گرفتن زاویه ورودی نوک پره، زاویه خروجی نوک پره و نسبت قطر خروجی به ورودی توپی به عنوان پارامترهای طراحی و ضریب هد، بازدهی هیدرولیکی و هد مکش مثبت خالص مورد نیاز به عنوان توابع هدف، به تعیین مقادیر بهینه جهت دست‌یابی به ماکزیمم عملکرد ایندیوسر پرداخته شده است. عملکرد ایندیوسر به‌صورت سه‌بعدی شبیه‌سازی و با نتایج تجربی مقایسه گردیده است که تطابق مناسب نتایج، نشان دهنده صحت روش و فرضیات مورد استفاده می‌باشد. شبکه عصبی مصنوعی برای استخراج رابطه مابین متغیرهای طراحی و توابع هدف مورد استفاده قرار گرفته است. در ادامه با استفاده از الگوریتم اصلاح شده ژنتیک بر مبنای مرتب سازی نقاط غیر برتر II نمودار پارتو در صفحه توابع هدف مختلف ترسیم شده و مقادیر نقاط بهینه پیشنهادی برای متغیرهای طراحی با استفاده از روش نزدیک‌ترین نقطه به نقطه ایده‌آل بدست آمده است. با توجه به بهینه‌سازی چند هدفی مقدار ضریب هد 14.3%، بازدهی هیدرولیکی 0.3% و هد مکش مثبت خالص موردنیاز 30.2% بهبود پیدا کرده است. نقاط طراحی پیشنهادی حاوی نکات قابل توجهی هستند که بدون استفاده از بهینه‌سازی چند هدفی قابل محاسبه نمی‌باشند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical simulation and multi-objective optimization of the centrifugal pump inducer

نویسندگان English

mohammad hassan shojaeefard 1
seyed ehsan hosseini 2
javad zare 3
1 Iran university of science and technology
2 Iran university of science and technology
3 School of mechanical engineering, Iran university of science and technology
چکیده English

Inducers are important devices which are mounted upstream of the inlet to the main impeller of the centrifugal pump to achieve higher suction performance and rotate with the same speed as the impeller. Inducers improve the hydraulic performance and lifespan of the pump through increasing the inlet pressure, but the quantity of the improvement is dependent on the geometrical parameters of the inducer. Therefore, the optimization of these parameters is crucial. In the present study, the performance of an inducer is optimized by considering the inlet tip blade angle, the outlet tip blade angle and the ratio of the outlet hub radius to inlet hub radius as design variables and the head coefficient, the hydraulic efficiency and the required net positive suction head as objective functions. The inducer performance is simulated using 3-D computational fluid dynamics and compared with experimental data which shows the validity of the used method and assumptions. The artificial neural network is used to relate between design variables and objective functions. Then, the Pareto fronts are plotted using the modified non-dominated sorting genetic algorithm II and the proposed optimum points are presented using nearest point to the ideal point method. Using multi objective optimization, the head coefficient, the hydraulic efficiency and the net positive suction head are improved 14.3%, 0.3% and 30.2%, respectively. Recommended design points unveil important optimal design principles that would not have been obtained without the use of a multi objective optimization approach.

کلیدواژه‌ها English

Inducer
Centrifugal pump
artificial neural network
multi-objective optimization
[1] J. K. Jakobsen, Liquid rocket engine turbopump inducers, NASA SP-8052, 1971.
[2] X. M. Guo, Z. C. Zhu, B. L. Cui, and G. P. Shi, Effects of the number of inducer blades on the anti-cavitation characteristics and external performance of a centrifugal pump, Jornal of Mechanichal Science and Technology, Vol. 30, No. 7, pp. 3173-3181, 2016.
[3] B. Y. Kang and S. H. Kang, Effect of the number of blades on the performance and cavitation instabilities of a turbopump inducer with an identical solidity, Jornal of Mechanichal Science and Technology, Vol. 29, No. 12, pp. 5251-5256, 2015.
[4] S. S. Hong, D. J. Kim, J. S. Kim, C. H. Choi, and J. Kim, Study on inducer and impeller of a centrifugal pump for a rocket engine turbopump, Proc Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, Vol. 227, No. 2, pp. 311-319, 2012.
[5] K. Okita, H. Ugajin, Y. Matsumoto, Numerical analysis of the influence of the tip clearance flows on the unsteady cavitating flows in a three dimensional inducer, Journal of Hydrodynamics, Vol. 21, No. 1, pp. 34-40, 2009.
[6] B. Jafarzadeh, A. Hajari, M. M. Alishahi, M. H. Akbari, The flow simulation of a low-specific speed high-speed centrifugal pump, Applied Mathematical Modelling, Vol. 35, pp. 242-249, 2011.
[7] O. Coutier-Delgosha, P. Morel, R. Fortes-Patella, J. L. Reboud, Numerical simulation of turbopump inducer cavitating behavior, International Journal of Rotating Machinery, Vol. 2, pp. 135-142, 2005.
[8] Y. Zhang, S. Hu, J. Wu, Y. Zhang, and L. Chen, Modeling and multi-objective optimization of double suction centrifugal pump based on Kriging meta-models, Advances in Global Optimization. Springer Proceedings in Mathematics & Statistics, Vol. 95, pp. 251-261, 2015.
[9] H. Hao, L. Xinkai, G. Bo, Hydraulic Optimization of Multiphase Pump Based on CFD and Genetic Algorithm, International Journal of Grid Distribution Computing, Vol. 8, No. 6, pp. 161–170, 2015.
[10] S. Derakhshan, M. Pourmahdavi, E. Abdolahnejad, A. Reihani, A. Ojaghi, Numerical shape optimization of a centrifugal pump impeller using artificial bee colony algorithm, Computers and Fluids, Vol. 81, pp. 145–151, 2013.
[11] H. Safikhani, A. Nourbakhsh, A. Khalkhali, N. Nariman-Zadeh, Modeling and multi-Objective optimization of centrifugal pumps using CFD and neural networks, 2nd International Conference on Engineering Optimization, Lisbon, Portugal, september 6-9, 2010.
[12] A. Nourbakhsh, H. Safikhani, and S. Derakhshan, The comparison of multi-objective particle swarm optimization and NSGA II algorithm : applications in centrifugal pumps, Engineering Optimization, Vol. 43, No. 10, pp. 1095-1113, 2011.
[13] A. Demeulenaere, A. Purwanto, A. Ligout, C. Hirsch, R. Dijkers and F. Visser, Design and Optimization of an Industrial Pump: Application of Genetic Algorithms and Neural Network, ASME Proceedings, 5th International Symposium on Pumping Machinery, Houston, Texas, USA, June 19-23, 2005.
[14] J. Zhang, H. Zhu, C. Yang, Y. Li, and H. Wei, Multi-objective shape optimization of helico-axial multiphase pump impeller based on NSGA-II and ANN, Energy Conversion and Management, Vol. 52, No. 1, pp. 538–546, 2011.
[15] H. Safikhani, a Khalkhali, and M. Farajpoor, Pareto Based Multi-Objective Optimization of Centrifugal Pumps Using Cfd , Neural Networks and Genetic Algorithms, Engineering Applications of Computational Fluid Mechanics, Vol. 5, No. 1, pp. 37–48, 2011.
[16] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, New York, Addison‐Wesley, 1989.
[17] A. Ivakhnenko, Polynomial theory of complex systems, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 1, No. 4, pp. 364–378, 1971.
[18] C.A. Coello, A comprehensive survey of evolutionary based multiobjective optimization techniques, Knowledge and Information Systems, Vol. 1, No. 3, pp. 269‐308, 1999.
[19] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA‐II, IEEE Transactions On Evolutionary Computation, Vol. 6, No. 2, pp.182‐197, 2002.
[20] M. H. Shojaeefard and J. Zare, An Investigation of the Potential of Improving an R1234yf Parallel Flow Condenser Performance Using Modeling and Hybrid Procedure of the Modified NSGA-II and TOPSIS, Heat Transfer Engineering, pp. 1–18, 2017.
[21] M. H. Shojaeefard and J. Zare, Modeling and combined application of the modified NSGA-II and TOPSIS to optimize a refrigerant-to-air multi-pass louvered fin-and-flat tube condenser, Applied Thermal Engineering, Vol. 103, pp. 212-225, 2016.
[22] M. H. Shojaeefard, A. khalkhali, J. Zare, M. Tahani, Multi objective optimization of heat pipe thermal performance while using aluminium oxide nanofluid,” Modares Mechanical Engineering, Vol. 14, No. 1, pp. 158-167, 2014. (in Persianفارسی )
[23] M. H. Shojaeefard, A. Khalkhali, M. Tahani, B. Salimian, Multi objective optimization of the centrifugal oil Pump impeller, Modares Mechanical Engineering, Vol. 13, No.11, pp. 13-149, 2014. (in Persianفارسی )
[24] L. D’Agostino, L. Torre, A. Pasini, D. Baccarella, A. Cervone and A. Milani, A Reduced Order Model for Preliminary Design and Performance Prediction of Tapered Inducers: Comparison with Numerical Simulations, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hatford, July 21-23, 2008.
[25] V. Yakhot and S. A. Orszag, Renormalization group analysis of turbulence. I. Basic theory, Journal of Scientific Computing, Vol. 1, No. 1, pp. 3-51, 1986.
[26] L. Torre, A. Pasini, A. Cervone, L. d’Agostino, Experimental Performance of a Tapered Axial Inducer: Comparison with Analytical Predictions, 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, Colorado, August 2-5, 2009.