مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

کنترل ردیابی شبکه‌ی عصبی موجک تطبیقی یک ربات تک لینک با ورودی لقی

نویسندگان
1 دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران
2 دانشگاه صنعتی نوشیروانی بابل
3 عضو هیئت علمی دانشکده برق و کامپیوتر- دانشگاه صنعتی نوشیروانی بابل
چکیده
در این مقاله یک کنترل کننده ردیابی مبتنی بر شبکه عصبی ویولت تطبیقی، برای حل مشکل پایداری و کنترل کلاسی از سیستمهای غیرخطی نامعین زمان-گسسته مورد بررسی قرار گرفته است. سیستم مورد مطالعه به فرم پسخورد اکید بوده و شامل غیرخطی لقی و اغتشاش خارجی می باشد و غیرخطی لقی به شکل نامتقارن در نظر گرفته شده است. این سیستمها حالت کلی تری نسبت به سیستمهای مورد مطالعه پیشین دارد و برای غلبه بر پیچیدگی پایداری آن، با استفاده از توابع پیش‌بین، به یک سیستم پیش‌بینی کننده n گام پیش رو تبدیل شده است. در اینجا از شبکه‌ی عصبی موجک برای تقریب توابع ناشناخته در سیستم‌های تبدیل شده استفاده می‌شود. قوانین تطبیق بر اساس قاعده‌ی گرادیان نزولی، برای بروزرسانی وزنهای شبکه عصبی موجک و جبران اثر پارامترهای نامعلوم لقی طراحی می‌شود. بر اساس تئوری لیاپانوف نشان داده می شود که همه ی سیگنالها در سیستم حلقه بسته کراندار بوده و خطای ردیابی به همسایگی کوچکی از صفر همگرا می شود. روش ارائه شده در این مقاله، بر روی یک سیستم روبات با یک بازوی مکانیکی متحرک شبیه سازی شده است و در پایان، به منظور اعتبارسنجی، نتایج روش پیشنهادی با نتایج اعمال دو کنترل‌کننده PID و مد لغزشی، مورد مقایسه قرار گرفته است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Adaptive Wavelet Neural Network Tracking Control of a Single-Link Robot with Backlash Input

نویسندگان English

Sepideh Esapour 1
Abolfazl Ranjbar N. 2
1 Electrical and Computer engineering department, Babol Noshirvani Universality of Technology, Babol, Iran
2 Babol Noshirvani University of Technology
چکیده English

In this paper, an adaptive wavelet neural network tracking controller is studied for solving control and stability problem of a class of uncertain nonlinear systems. The considered systems in this paper are of the discrete-time form in pure-feedback structure and include the backlash and external disturbance. The backlash nonlinearity input appears non-symmetric in the systems. These systems are more general than those in the previous work. There are major difficulties for stabilizing such systems and in order to overcome the difficulties, by using prediction function of future states, the systems are transformed into an n-step-ahead predictor. The wavelet neural networks are used to approximate the unknown functions and unknown backlash in the transformed systems and the adaption laws are to update neural weights and to compensate for the unknown parameter of backlash. Based on the Lyapunov theory, it is shown that the proposed controller guarantees that all the signals in the closed-loop system are bounded and the tracking error converges to a small neighborhood of zero. The simulation of a Single-link robot arm system is provided to verify the effectiveness of the control approach in the paper. Finally, in order to validate, the results of the proposed method are compared with the results of PID and sliding mode controller.

کلیدواژه‌ها English

Adaptive Tracking control
Wavelet Neural Network
Backlash Nonlinear input
Nonlinear Discrete-time systems
Single Link Robot
[1] G. Tao and P. V. Kokotovic, Adaptive control of plants with unknown dead-zones, IEEE Transactions on Automatic Control, vol. 39, no. 1, pp. 59-68, 1994.
[2] G. Tao and P. V. Kokotovic, Adaptive control of systems with actuator and sensor nonlinearities. John Wiley & Sons, Inc., 1996.
[3] G. Tao and P. V. Kokotovic, Adaptive control of systems with backlash, Automatica, vol. 29, no. 2, pp. 323-335, 1993.
[4] C.-Y. Su, Y. Stepanenko, J. Svoboda, and T.-P. Leung, Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis, IEEE Transactions on Automatic Control, vol. 45, no. 12, pp. 2427-2432, 2000.
[5] J. Zhou, C. Wen, and Y. Zhang, Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis, IEEE transactions on Automatic Control, vol. 49, no. 10, pp. 1751-1759, 2004.
[6] H. Li, J. Yu, C. Hilton, and H. Liu, Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T–S fuzzy approach, IEEE Transactions on Industrial Electronics, vol. 60, no. 8, pp. 3328-3338, 2013.
[7] M. Chen and S. S. Ge, Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer, IEEE Transactions on Cybernetics, vol. 43, no. 4, pp. 1213-1225, 2013.
[8] D. Li, Adaptive neural network control for a class of continuous stirred tank reactor systems, Science China Information Sciences, vol. 57, no. 10, pp. 1-8, 2014.
[9] W. Chen, S. Hua, and H. Zhang, Consensus-based distributed cooperative learning from closed-loop neural control systems, IEEE transactions on neural networks and learning systems, vol. 26, no. 2, pp. 331-345, 2015.
[10] Y.-J. Liu and N. Zhou, Observer-based adaptive fuzzy-neural control for a class of uncertain nonlinear systems with unknown dead-zone input, ISA transactions, vol. 49, no. 4, pp. 462-469, 2010.
[11] Z. Li and C. Yang, Neural-adaptive output feedback control of a class of transportation vehicles based on wheeled inverted pendulum models, IEEE Transactions on Control Systems Technology, vol. 20, no. 6, pp. 1583-1591, 2012.
[12] C. Yang, Z. Li, and J. Li, Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models, IEEE Transactions on Cybernetics, vol. 43, no. 1, pp. 24-36, 2013.
[13] S. Tong, S. Sui, and Y. Li, Observed-based adaptive fuzzy tracking control for switched nonlinear systems with dead-zone, IEEE transactions on cybernetics, vol. 45, no. 12, pp. 2816-2826, 2015.
[14] S. Tong and Y. Li, Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones, IEEE Transactions on Fuzzy Systems, vol. 20, no. 1, pp. 168-180, 2012.
[15] S. Tong and Y. Li, Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs, IEEE Transactions on Fuzzy Systems, vol. 21, no. 1, pp. 134-146, 2013.
[16] M. Chen, S. S. Ge, and B. V. E. How, Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities, IEEE Transactions on Neural Networks, vol. 21, no. 5, pp. 796-812, 2010.
[17] M. Chen, S. S. Ge, and B. Ren, Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints, Automatica, vol. 47, no. 3, pp. 452-465, 2011.
[18] H. Wang, B. Chen, X. Liu, K. Liu, and C. Lin, Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints, IEEE Transactions on Cybernetics, vol. 43, no. 6, pp. 2093-2104, 2013.
[19] Y. Liu and Y. Lin, Global adaptive output feedback tracking for a class of non-linear systems with unknown backlash-like hysteresis, IET Control Theory & Applications, vol. 8, no. 11, pp. 927-936, 2014.
[20] A. Boulkroune, M. M'Saad, M. Tadjine, and M. Farza, Adaptive fuzzy control of MIMO nonlinear systems with unknown hysteresis and control gain matrix sign, in Control and Automation, 2008 16th Mediterranean Conference on, 2008, pp. 380-385: IEEE.
[21] F. Wang, Z. Liu, Y. Zhang, and C. P. Chen, Adaptive fuzzy control for a class of stochastic pure-feedback nonlinear systems with unknown hysteresis, IEEE Transactions on Fuzzy Systems, vol. 24, no. 1, pp. 140-152, 2016.
[22] Z. Liu, X. Dong, J. Xue, and Y. Chen, Adaptive neural control for a class of time-delay systems in the presence of backlash or dead-zone non-linearity, IET Control Theory & Applications, vol. 8, no. 11, pp. 1009-1022, 2014.
[23] G. Lai, Z. Liu, Y. Zhang, and C. P. Chen, Adaptive fuzzy tracking control of nonlinear systems with asymmetric actuator backlash based on a new smooth inverse, IEEE transactions on cybernetics, vol. 46, no. 6, pp. 1250-1262, 2016.
[24] D. Lin, H. Liu, H. Song, and F. Zhang, Fuzzy neural control of uncertain chaotic systems with backlash nonlinearity, International Journal of Machine Learning and Cybernetics, vol. 5, no. 5, pp. 721-728, 2014.
[25] Z. Liu, C. Chen, and Y. Zhang, Decentralized robust fuzzy adaptive control of humanoid robot manipulation with unknown actuator backlash, IEEE Transactions on Fuzzy Systems, vol. 23, no. 3, pp. 605-616, 2015.
[26] W. He, A. O. David, Z. Yin, and C. Sun, Neural network control of a robotic manipulator with input deadzone and output constraint, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 6, pp. 759-770, 2016.
[27] A. K. Alexandridis and A. D. Zapranis, Wavelet neural networks: with applications in financial engineering, chaos, and classification. John Wiley & Sons, 2014.
[28] C.-K. Lin, Adaptive tracking controller design for robotic systems using Gaussian wavelet networks, IEE Proceedings-Control Theory and Applications, vol. 149, no. 4, pp. 316-322, 2002.
[29] C. Yang, S. S. Ge, C. Xiang, T. Chai, and T. H. Lee, Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach, IEEE Transactions on Neural Networks, vol. 19, no. 11, pp. 1873-1886, 2008.
[30] S. S. Ge, G. Li, and T. H. Lee, Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems, Automatica, vol. 39, no. 5, pp. 807-819, 2003.
[31] S. S. Ge, C. Yang, and T. H. Lee, Adaptive predictive control using neural network for a class of pure-feedback systems in discrete time, IEEE Transactions on Neural Networks, vol. 19, no. 9, pp. 1599-1614, 2008.
[32] Y. Zhang, T. Chai, H. Wang, J. Fu, L. Zhang, and Y. Wang, An adaptive generalized predictive control method for nonlinear systems based on ANFIS and multiple models, IEEE Transactions on Fuzzy Systems, vol. 18, no. 6, pp. 1070-1082, 2010.
[33] Y. Liu, L. Liu, and S. Tong, Adaptive neural network tracking design for a class of uncertain nonlinear discrete-time systems with dead-zone, Science China Information Sciences, vol. 57, no. 3, pp. 1-12, 2014.
[34] Y.-J. Liu, Y. Gao, S. Tong, and Y. Li, Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone, IEEE Transactions on Fuzzy Systems, vol. 24, no. 1, pp. 16-28, 2016.
[35] C.-L. Hwang and C. Jan, A reinforcement discrete neuro-adaptive control for unknown piezoelectric actuator systems with dominant hysteresis, IEEE Transactions on Neural networks, vol. 14, no. 1, pp. 66-78, 2003.
[36] J. O. Jang, H. T. Chung, and I. S. Lee, Backlash compensation of discrete time systems using fuzzy logic, in Decision and Control, 2001. Proceedings of the 40th IEEE Conference on, 2001, vol. 4, pp. 3956-3961: IEEE.
[37] Y.-J. Liu and S. Tong, Adaptive fuzzy control for a class of nonlinear discrete-time systems with backlash, IEEE Transactions on Fuzzy Systems, vol. 22, no. 5, pp. 1359-1365, 2014.