مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

میرایی فعال ارتعاشات ابزار داخل‌تراش به روش کنترل ضد اغتشاش ADRC

نویسندگان
1 دانشجوی دکتری مکانیک در دانشگاه فردوسی مشهد
2 استاد عضو هیات علمی گروه مکانیک /دانشگاه فردوسی مشهد
چکیده
یکی از مهمترین محدودیتهای بهره‌ وری در تولید، ارتعاشات ماشینکاری است. این ارتعاشات منجر به افزایش هزینه‌های ماشینکاری، کاهش دقت قطعات و کاهش عمر ابزار برشی می‌گردد. مؤثرترین راه‌حل برای افزایش پایداری فرآیند برش و حذف ارتعاشات ، افزایش صلبیت دینامیکی سازه می‌باشد. شیوه‌های مختلفی برای افزایش صلبیت دینامیکی سازه‌ها با استفاده از روشهای کنترل ارتعاشات غیرفعال و فعال ارائه شده است. اگرچه روشهای غیرفعال کنترل ارتعاشات همیشه پایدار هستند ولی دارای عملکرد محدودی می‌باشند. روشهای فعال کنترل ارتعاشات این قابلیت را دارا می‌باشند که ارتعاشات را به نحو مطلوبی در شرایط مختلف میرا کنند. هدف این پژوهش افزایش صلبیت دینامیکی یک ابزار داخل‌تراش در مقیاس صنعتی با استفاده از میرایی فعال می‌باشد. فرآیند برش عمدتاً در معرض تغییرات پارامترها و اغتشاشات ناشناخته خارجی است، بنابراین طراحی یک سیستم کنترل ارتعاش فعال برای فرآیند برش یک مشکل چالش برانگیز است. در این پژوهش روش کنترلی بر اساس مفهوم مشاهده‌گر حالت گسترش یافته برای غلبه بر این عدم قطعیتها ارائه شده است. این استراتژی در سیستم کنترل ارتعاشات ابزار داخل‌تراش بکار گرفته شده است. همچنین الگوریتم پسخور مستقیم سرعت نیز در کنترل حلقه بسته ارتعاشات پیاده‌سازی شده است. نتایج آزمون‌های کنترل ضربه نشان می‌دهد که الگوریتم‌های کنترلی در کاهش ارتعاشات و افزایش صلبیت دینامیکی سازه دارای عملکرد خوبی می‌باشند. نتایج آزمون ضربه ولتاژی نیز نشان می‌دهد کنترلر ADRC نسبت به کنترلر پسخور مستقیم سرعت از تلاش کنترلی کمتری برخوردار است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Active Damping of a Boring Bar Using Active Disturbance Rejection Control

نویسندگان English

Pooria Naeemi Amini 1
Behnam Moetakef-Imani 2
1 PhD Candidate,Department of Mechanical Engineering, Ferdowsi University of Mashhad
چکیده English

One of the most important constraints on manufacturing productivity is the machining vibrations. This vibrations may cause increase in machining costs, lower accuracy of products and decrease tool life. The effective solution for increasing cutting process stability and vibration suppression is to improve structural dynamic stiffness. There has been presented different techniques for enhancing dynamic stiffness of structures using passive and active vibration control methods. Although passive vibration control methods are always stable, they exhibit limited performance. In active control methods, vibrations can be effectively damped over a various conditions. The aim of this research is to enhance the dynamic stiffness of an industrial boring bar by using active damping. Cutting process mainly exposed to parameter perturbations and unknown external disturbances, therefore, designing an active vibration control system for cutting process is a challenging problem. In this research an extended state observer based control strategy was proposed that can overcome these uncertainties. The proposed strategy was implemented into an active vibration control system for a boring bar. Moreover, the direct velocity feedback is successfully implemented in the vibration control loop. The results of impact tests indicate that the control algorithms have a great performance in suppressing vibrations and increasing the structural dynamic stiffness. Voltage impact results show that ADRC controller spends less control effort than direct velocity feedback controller.

کلیدواژه‌ها English

Boring Bar
active damping
Vibration Control
ADRC method
[1] Y. Altintas, Manufacturing Automation, Cambridge University Press, 2012.
[2] G. Quintana and J. Ciurana, Chatter in Machining Processes: A Review, International Journal of Machine Tools and Manufacture, Vol. 51, pp. 363–376, 2011.
[3] J. Munoa, X. Beudaert, Z. Dombovari, Y. Altintas, E. Budak, C. Brecher and G. Stepan, Chatter suppression techniques in metal cutting, CIRP Annals-Manufacturing Technology, Vol. 65, Issue 2, pp. 785-808, 2016.
[4] N. D. Sims, Vibration absorbers for chatter suppression: A new analytical tuning methodology, Journal of Sound & Vibration, Vol. 301, pp. 592–607, 2007.
[5] B. Muhammad, M. Wan, J. Feng and W. H. Zhang, Dynamic damping of machining vibration: a review, The International Journal of Advanced Manufacturing Technology, Vol. 89, Issue 9–12, pp. 2935–2952, 2017.
[6] H. Tanaka, F. Obata, T. Matsubara and H. Mizumoto, Active Chatter Suppression of Slender Boring Bar using Piezoelectric Actuators, JSME International Journal, Vol. 37/3, pp. 601–606, 1994.
[7] J. M. Redmond, P. Barney and D. Smith, Development of an active boring bar for increased chatter immunity, Proc. SPIE 3044, pp. 295–306, 1997.
[8] L. Andrén and L. Hakansson, Active Vibration Control of Boring Bar Vibrations, Sweden, 2004.
[9] F. Chen, Active Damping of machine tools with magnetic actuators, Ph.D. Dissertation, The University of British Columbia, Vancouver, 2014.
[10] S. K. Choudhury and M. S. Sharath, On-line control of machine tool vibration during turning operation, Journal of Material Processing Technology, Vol. 47, pp. 251–259, 1995.
[11] J. R. Pratt and A. H. Nayfeh, Chatter control and stability analysis of a cantilever boring bar under regenerative cutting conditions, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 359, No. 1781, pp. 759–792, 2001.
[12] A. Ganguli, Chatter reduction through active vibration damping, Ph.D. dissertation, Université libre de Bruxelles, 2005.
[13] J. Munoa, I. Mancisidor, N. Loix, L. G. Uriarte, R. Barcena and M. Zatarain, Chatter suppression in ram type travelling column milling machines using a biaxial inertial actuator, CIRP Annals- Manufacturing Technology, Vol. 62, Issue 1, pp. 407-410, 2013.
[14] F. Chen, X. Lu and Y. Altintas, A novel magnetic actuator design for active damping of machining tools, International Journal of Machine Tools and Manufacture, Vol. 85, pp. 58-69, 2014.
[15] S. Hayati, M. Hajaliakbari, Y. Rajabi and S. Rasaee, Chatter reduction in slender boring bar via a tunable holder with variable mass and stiffness, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, https://doi.org/10.1177/0954405417690554.
[16] E. Abele, M. Haydn and T. Grosch, Adaptronic approach for modular long projecting boring tools, CIRP Annals - Manufacturing Technology, Vol. 65, pp. 393-396, 2016.
[17] S. Zhao and Z. Gao, An Active Disturbance Rejection Based Approach to Vibration Suppression in Two-Inertia Systems, Asian Journal of Control, Vol. 15, Issue 2, pp. 350-362, 2013.
[18] A. Preumont, Vibration Control of Active Structures: An Introduction, Third Edition, Springer Netherlands, 2011.
[19] Wodek Gawronski, Advanced Structural Dynamics and Active Control of Structures, Springer-Verlag, 2004.
[20] C. Fuller, S. J. Elliott and P. A. Nelson, Active Control of Vibration, Academic Press, 1996.
[21] T. Samad and A.M. Annaswamy, The Impact of Control Technology Overview, Success Stories, and Research Challenges, IEEE Control Systems Society, 2011. Available: http://ieeecss.org/main/IoCT-report.
[22] Z. Gao, Y. Huang, and J. Han, An Alternative Paradigm for Control System Design, Proceedings of IEEE Conference on Decision and Control, vol. 5, no. 4–7, pp. 4578–4585, Orlando, Florida, 2001.
[23] Z. Gao, Active disturbance rejection control: a paradigm shift in feedback control system design, American Control Conference, Vol. 6, pp. 2399–2405, Jun. 2006.
[24] Z. Gao, Scaling and Bandwidth-Parameterization based controller tuning, Proceedings of the American Control Conference, Denver, Colorado, pp. 4989-4996, 2003.
[25] C. D. Johnson, Accommodation of External Disturbances in Linear Regulator and Servomechanism Problems, IEEE Transactions on Automatic Control, Vol. 16, pp. 635-644, December 1971.
[26] T. Umeno and Y. Hori, Robust Speed Control of Dc Servomotors Using Modern Two Degrees-of-Freedom Controller Design, IEEE Transactions on Industrial Electronics, Vol. 38, pp. 363-368, October 1991.
[27] S. J. Kwon and W. K. Chung, A Discrete-time Design and Analysis of erturbation observer, Proceedings of the American Control Conference, Anchorage, Alaska, pp. 2653-2658, 2002.
[28] Q. Zheng, On Active Disturbance Rejection Control: Stability Analysis and Applications in Disturbance Decoupling Control, DRE Thesis, Dept. Elect. Eng., Cleveland State University, Cleveland, Ohio, 2009.
[29] Y. Hou, Z. Gao, F. Jiang, and B. T. Boulter, Active disturbance rejection control for web tension regulation, Proceedings of the 40th IEEE Conference on Decision and Control, vol.5, pp. 4974-4979, 2001.
[30] W. Zhou and Z. Gao, An Active Disturbance Rejection Approach to Tension and Velocity Regulations in Web Processing Lines, IEEE International Conference on Control Applications, pp. 842-848, 2007.
[31] B. Sun and Z. Gao, A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter, IEEE Transactions on Industrial Electronics, Vol. 52, pp. 1271-1277, 2005.
[32] F. J. Goforth and Z. Gao, An Active Disturbance Rejection Control solution for hysteresis compensation, American Control Conference, pp. 2202-2208, 2008.
[33] F. J. Goforth, Q. Zheng, and Z. Gao, A novel practical control approach for rate independent hysteretic systems, ISA Transactions, to be published, available online at http://www.sciencedirect.com/science/article/pii/S0019057812000079.
[34] Q. Zheng, L. Dong, D. H. Lee, and Z. Gao, Active Disturbance Rejection Control for MEMS Gyroscopes, IEEE Transactions on Control Systems Technology, Vol. 17, pp. 1432-1438, 2009.
[35] Q. Zheng, Z. Chen, and Z. Gao, A practical approach to disturbance decoupling control, Control Engineering Practice, Vol. 17, pp. 1016-1025, 2009.
[36] Radke, On disturbance estimation and its applications in health monitoring, Dissertation, Cleveland State University, 2006.
[37] B. Guo and Z. Zhao, On the convergence of an extended state observer for nonlinear systems with uncertainty, Systems & Control Letters, Vol. 60, pp. 420-430, 2011.
[38] P. Naeemi Amini, B. Moetakef Imani, Identification and control of an active boring bar using VC Actuator, Modares Mechanical Engineering, Vol. 17, No. 8, pp. 87-96, 2017 (in Persian).
[39] X. D. Lu, F. Chen, and Y. Altintas, Magnetic actuator for active damping of boring bars, CIRP Annals- Manufacturing Technology, Vol. 63, No. 1, pp. 369–372, 2014.