[1] R. C. Batra, M. Porfiri, D. Spinello, Review of modeling electrostatically actuated microelectromechanical systems, Smart Materials and Structures, Vol. 16, pp. R23, 2007.
[2] J. Miao, R. Lin, L. Chen, Q. Zou, S. Y. Lim, S. H. Seah, Design considerations in micromachined silicon microphones, Microelectronics Journal, Vol. 33, pp. 21-28, 2002.
[3] R. K. A. Al-Rub, G. Z. Voyiadjis, Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro-and nano-indentation experiments, International Journal of Plasticity, Vol. 20, pp. 1139-1182, 2004.
[4] A. W. McFarland, J. S. Colton, Role of material microstructure in plate stiffness with relevance to microcantilever sensors, Journal of Micromechanics and Microengineering, Vol. 15, pp. 1060, 2005.
[5] R. D. Mindlin, H. F. Tiersten, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and analysis, Vol. 11, pp. 415-448, 1962.
[6] W. T. Koiter, Couple stresses in the theory of elasticity. Proc. Koninklijke Nederl. Akaad. van Wetensch,Vol. 67, pp. 17-44, 1964..
[7] R. D. Mindlin, Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis, Vol. 16, pp. 51-78, 1964.
[8] R. D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, International Journal of Solids and Structures, Vol. 1, pp. 417-438, 1965.
[9] F. A. C. M. Yang, A. C. M. Chong, D. C. C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, Vol. 39, pp. 2731-2743, 2002.
[10] D. C. Lam, F. Yang, A. C. M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, Vol. 51, pp. 1477-1508, 2003.
[11] S. K. Park, X. L. Gao, Bernoulli–Euler beam model based on a modified couple stress theory, Journal of Micromechanics and Microengineering, Vol. 16, pp. 2355, 2009.
[12] H. M. Ma, X. L. Gao, J. N. Reddy, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, Journal of the Mechanics and Physics of Solids, Vol. 56, pp. 3379-3391, 2008
[13] S. Kong, S. Zhou, Z. Nie, K. Wang, K. The size-dependent natural frequency of Bernoulli–Euler micro-beams, International Journal of Engineering Science, Vol. 46, pp. 427-437, 2008.
[14] B. Wang, J. Zhao, S. Zhou, A micro scale Timoshenko beam model based on strain gradient elasticity theory, European Journal of Mechanics-A/Solids, Vol. 29, pp. 591-599, 2010.
[15] M. A. Nojoumian, H. Salarieh, Comment on “A micro scale Timoshenko beam model based on strain gradient elasticity theory” European Journal of Mechanics-A/Solids, 2013.
[16] M. Asghari, M. H. Kahrobaiyan, M. T. Ahmadian, A nonlinear Timoshenko beam formulation based on the modified couple stress theory, International Journal of Engineering Science, Vol. 48, pp. 1749-1761, 2010.
[17] M. H. Kahrobaiyan, M. Asghari, M. Rahaeifard, M. T. Ahmadian, A nonlinear strain gradient beam formulation, International Journal of Engineering Science, Vol. 49, pp. 1256-1267, 2011.
[18] B. Akgöz, Ö. Civalek, A size-dependent shear deformation beam model based on the strain gradient elasticity theory, International Journal of Engineering Science, Vol. 70, pp. 1-14, 2013.
[19] M. A. Khorshidi, M. Shariati, S. A. Emam, Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory, International Journal of Mechanical Sciences,Vol. 110, pp. 160-169, 2016.
[20] H. A. Boroujeni, Free vibration of micro rotating Euler-Bernoulli beams based on the strain gradient theory, Modares Mechanical Engineering, Vol. 16, pp. 120-128, 2016. (in Persianفارسی )
[21] M. A. Karami, M. Abbasi, Investigation of the size effect on the vibrational behavior of an AFM microcantilever with a sidewall probe, using strain gradient elasticity theory, Modares Mechanical Engineering, Vol. 13, pp. 90-99, 2014. (in Persianفارسی )
[22] G. C. Tsiatas, A new Kirchhoff plate model based on a modified couple stress theory, International Journal of Solids and Structures, Vol. 46, pp. 2757-2764, 2009.
[23] B. Wang, S. Zhou, J. Zhao, X. Chen, A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory, European Journal of Mechanics-A/Solids, Vol. 30, pp. 517-524, 2011.
[24] H. M. Ma, X. L. Gao, J. N. Reddy, A non-classical Mindlin plate model based on a modified couple stress theory, Acta mechanica, Vol. 220, pp. 217-235, 2011.
[25] E. Jomehzadeh, H. R. Noori, A. R. Saidi, The size-dependent vibration analysis of micro-plates based on a modified couple stress theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, pp. 877-883, 2011.
[26] S. Ramezani, A shear deformation micro-plate model based on the most general form of strain gradient elasticity, International Journal of Mechanical Sciences, Vol. 57, pp. 34-42, 2012.
[27] M. Asghari, Geometrically nonlinear micro-plate formulation based on the modified couple stress theory, International Journal of Engineering Science, Vol. 51, pp. 292-309, 2012.
[28] J. N. Reddy, J. Berry, Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress. Composite Structures, Vol. 94, pp. 3664-3668, 2012.
[29] H. T. Thai, D. H. Choi, Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory, Composite Structures, Vol. 95, pp. 142-153, 2013.
[30] A. A. Movassagh, M. J. Mahmoodi, A micro-scale modeling of Kirchhoff plate based on modified strain-gradient elasticity theory, European Journal of Mechanics-A/Solids, Vol. 40, pp. 50-59, 2013.
[31] M. H. Ghayesh, M. Amabili, H. Farokhi, Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory, International Journal of Engineering Science, Vol. 63, pp. 52-60, 2013.
[32] S. Sahmani, R. Ansari, On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory, Composite Structures, Vol. 95, pp. 430-442, 2013.
[33] S. OmidDezyani, R. A. Jafari-Talookolaei, M. Abedi, H. Afrasiab, Vibration analysis of a microplate in contact with a fluid based on the modified couple stress theory, Modares Mechanical Engineering, Vol. 17, pp. 47-57, 2017. (in Persianفارسی )
[34] A. Zervos, S. A. Papanicolopulos, I. Vardoulakis, Two finite-element discretizations for gradient elasticity, Journal of engineering mechanics, Vol. 135, pp. 203-213, 2009.
[35] S. A. Papanicolopulos, A. Zervos, I. Vardoulakis, A three‐dimensional C1 finite element for gradient elasticity, International journal for numerical methods in engineering, 77(10), 1396-1415, 2009.
[36] J. Zhao, W. J. Chen, S. H. Lo, A refined nonconforming quadrilateral element for couple stress/strain gradient elasticity. International journal for numerical methods in engineering, Vol. 85, pp. 269-288, 2011.
[37] R. Ansari, M. F. Shojaei, H. Rouhi, Small-scale Timoshenko beam element, European Journal of Mechanics-A/Solids, Vol. 53, pp. 19-33, 2015.
[38] R. Ansari, M. F. Shojaei, V. Mohammadi, M. Bazdid-Vahdati, H. Rouhi, Triangular Mindlin microplate element, Computer Methods in Applied Mechanics and Engineering, 295, 56-76, 2015.
[39] K. S. Ram, P. K. Sinha, Hygrothermal bending of laminated composite plates with a cutout, Computers & structures, Vol. 43, pp. 1105-1115, 1992.
[40] C. C. Lo, A. W. Leissa, Bending of plates with circular holes, Acta Mechanica, Vol. 4, pp. 64-78, 1967.