مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی کنترل‌کننده‌ی پیش‌بین مقید برای شناور زیرسطحی هوشمند و بهینه‌سازی زمان محاسبات در حضور اغتشاشات

نویسندگان
1 مرکز علم و فناوری مکاترونیک، مجتمع دانشگاهی مهندسی برق و کامپیوتر، دانشگاه صنعتی مالک اشتر، اصفهان، ایران
2 مجتمع دانشگاهی مهندسی برق و کامپیوتر، دانشگاه صنعتی مالک اشتر، تهران، ایران
چکیده
در این مقاله کنترل‌کننده‌ی پیش‌بین مقید با استفاده از توابع لاگر برای کنترل سمت و عمق یک شناور زیرسطحی هوشمند در حضور اغتشاشات طراحی شده است. شناور زیرسطحی هوشمند به دلیل دینامیک غیرخطی کوپل‌شده، نامعینی‌های پارامتری و اغتشاشات خارجی ناشی از محیط زیر آب دارای پیچیدگی زیادی است. علاوه بر این شناور زیرسطحی در نظرگرفته شده در این مقاله، دارای قیود موجود بر روی عملگرها می‌باشد که این محدودیت‌ها بر پیچیدگی کنترل آن افزوده است. در این تحقیق ابتدا دینامیک غیرخطی شناور زیرسطحی هوشمند مدل‌سازی می‌شود و در ادامه طراحی کنترل‌کننده پیش‌بین مقید انجام می‌شود. در طراحی کنترل‌کننده‌ی پیش‌بین مقید از توابع متعامد لاگر به منظور بهینه‌سازی و کاهش بار محاسباتی در بازه زمانی استفاده شده است. از مزایای کنترل‌کننده‌ی طراحی شده می‌توان به برخط و بهینه بودن، دقت بالا، قابلیت پیاده‌سازی، برخورد هدف‌مند با قیود و همچنین دارا بودن خواص مقاوم در برابر اغتشاشات اشاره کرد. به منظور نشان دادن کارایی روش، کنترل‌کننده‌ی پیشنهادی بر روی شناور زیرسطحی مورد نظر شبیه‌سازی شده و مقایسه‌ای بین زمان محاسبات کنترل‌کننده با استفاده از توابع لاگر و بدون استفاده از آن صورت گرفته است. نتایج شبیه‌سازی، کارایی و موثر بودن کنترل‌کننده ارائه شده را به خوبی نشان می‌دهد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Design of Constrained Predictive Controller for Autonomous Underwater Vehicle and Optimization of Computation Time in the Presence of Disturbances

نویسندگان English

Ayoub Khodaparast 1
Ali Jabar Rashidi 2
Bahram Karimi 2
1 Center of Mechatronics Science and Technology, Department of Electrical and computer Engineering , Malek-Ashtar University of Technology, Isfahan, Iran
2 Department of Electrical and Computer Engineering, Malek-Ashtar University of Technology, Tehran, Iran
چکیده English

In this paper, a constrained predictive controller is designed using Laguerre functions to control the depth and steering of an autonomous underwater vehicle considering underwater disturbances. Due to under-actuated nonlinear coupled dynamics, parameters uncertainty, external underwater disturbances autonomous underwater vehicles are complicated. Moreover, the underwater autonomous vehicle investigated in this study includes constraints on actuators leading a more complex problem. In this study, first, the nonlinear dynamics of the autonomous underwater vehicle utilized for the controller design has been modeled. Then, Laguerre orthogonal functions were used in the constrained predictive controller design for reducing computational time and accelerating optimization process. Optimized, online, high precision, implementation capability, consider constraints purposefully and robust properties against disturbances can be mentioned as the most important advantages of designed controller. In addition, predictive control method is robust against disturbances. To monitor the methods’ performance, the autonomous underwater vehicle was modeled and then a comparison between the controller's calculation time with and without the Laguerre functions was also represented. At the end, the simulation results obtained from this controller, using Laguerre functions, showed the efficiency and effectiveness of the proposed solution.

کلیدواژه‌ها English

Autonomous Underwater Vehicle
Predictive controller
Reduce Computational Time
Laguerre functions
[1] E. Zakeri, S. Farahat, Safe path planning and control of an Unmanned Underwater Vehicle (UUV) using particle swarm optimization and fuzzy logic control method, Modares Mechanical Engineering, Vol. 14, No. 14, pp. 199-210, 2015 (In Persian فارسی )
[2] A. Selk Ghafari, K. Daryani Tabrizi, S. Hosseini, A. Meghdari, Design and fabrication of a robotic fish with flexible tail and the control of its movement using Fuzzy Logic Controller, Modares Mechanical Engineering, Vol. 16, No. 9, pp. 339-346, 2016 (in Persian فارسی )
[3] A. Basohbat Novinzadeh, M. Asadi Matak, Design of stable nonlinear guidance of an underwater vehicle in the ship wake via estimated path by particle filter, Modares Mechanical Engineering, Vol. 17, No. 5, pp. 260-266, 2017 (in Persia فارسی )
[4] N. Janatian Ghadikolae, A. Kamali Eigoli, H. Naderan Tahan, Investigation of effective parameters in point to point control for two-link fish robot, Modares Mechanical Engineering, Vol. 17, No. 1, pp. 173-184, 2017 (in Persian فارسی )
[5] T. Ken, A. Edgar, P. Philippe, J. Beaujean, A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances. IEEE Journal of Oceanic Engineering, Vol. 37, No. 2, pp: 143-155, 2012.
[6] A. Budiyono, Model predictive control for autonomous underwater vehicle, IEEE Journal of Geo-Marine Sciences Vol. 40, No 2, pp. 191-199, 2011.
[7] M. Lashika, S. B. Williams, Model predictive control of an autonomous underwater vehicle in an in situ estimated water current profile, IEEE Conference of OCEANS, Vol. 1, No. 1, pp. 21-24, 2012.
[8] J. Petrich, D.J. Stilwell, Robust control for an autonomous underwater vehicle that suppresses pitch and yaw coupling, Ocean Engineering, Vol. 38, No. 1, pp. 197-204, 2011.
[9] G. Valdovinos, L. Govinda, Modelling, design and robust control of a remotely operated underwater vehicle, International Journal of Advanced Robotic Systems, Vol. 11, No. 1-16, 2014.
[10] R. Yang, B. Celement, A. Mansour, Modeling of a complex-shaped underwater vehicle for robust control scheme, Journal of Intelligent & Robotic Systems, Vol. 80, No.3-4, pp. 491-506, 2015.
[11] I. Abraham, J. Yi, Model predictive control of buoyancy propelled autonomous underwater glider, IEEE American Control Conference (ACC), pp. 1181-1186, 2015.
[12] B. S. Park, Neural network-based tracking control of underactuated autonomous underwater vehicles with model uncertainties, Journal of Dynamic Systems, Measurement, and Control, Vol. 137, No. 2, pp. 021004:1-7, 2015.
[13] R. Cui, Ch. Yang, Y. Li, Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 47, No. 6, pp. 1019-1029, 2017.
[14] D. C. Fernández, G. A. Hollinger, Model predictive control for underwater robots in ocean waves, IEEE Robotics and Automation Letters, Vol. 2, No. 1, pp. 88-95, 2017.
[15] M. Ekramian, M. Danesh, A. Kamali, Nonlinear Model for Autonomous Underwater Vehicle and Identification Based on Least Square Algorithm, Modares Mechanical Engineering, Vol. 17, No. 3, pp. 317-326, 2017 (in Persian فارسی )
[16] M. H. Korayem, M. Nazemizadeh, H. Ghaffarpour, Optimal Path Planning of Nonholonomic Mobile Robots using Optimal Control Method and Verification of the Method via Experimental Tests of the Scout Mobile Robot, Modares Mechanical Engineering, Vol. 12, No. 2, pp. 87-94, 2012 (in Persian فارسی )
[17] T. I. Fossen, Nonlinear modelling and control of underwater vehicles, Engineering Cybernetics, Norwegian University of Science and Technology, 1991.
[18] T. I. Fossen, Guidance and control of ocean vehicles: John Wiley & Sons Inc, 1994.
[19] S. S. Patel, K. Kumar, B. Botre, S. Akbar, Design of fuzzy logic based controller with pole placement for the control of yaw dynamics of an autonomous underwater vehicle, Annual IEEE India Conference (INDICON), pp. 1-6, 2015.
[20] T. J. Prestero, Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle, M. Sc. Thesis, Woods Hole Oceanpgraphic Institution, Massachusetts institute of technology, 2001.
[21] S. M. Doherty, Cross body thruster control and modeling of a body of revolution autonomous underwater vehicle, Naval Postgraduate School Monterey CA, pp. 2011.
[22] L. Wang, Continuous time model predictive control design using orthonormal functions, International Journal of Control, Vol. 74, No. 16, pp. 1588-1600, 2001.
[23] E. F. Camacho, B. A. Carlos, Model predictive control. Springer Science & Business Media, 2013.
[24] B. Kouvaritakis, C. Mark, Model predictive control. Springer, Switzerland, 2016.
[25] L. Wang, Model predictive control system design and implementation using MATLAB®: Springer Science & Business Media, 2009.