[1] Z. C. Xia, J. W. Hutchinson, Crack patterns in thin films, Journal of the Mechanics and Physics of Solids, Vol. 48, No. 6, pp. 1107-1131, 2000.
[2] T. Ye, Z. Suo, A. Evans, Thin film cracking and the roles of substrate and interface, International Journal of Solids and Structures, Vol. 29, No. 21, pp. 2639-2648, 1992.
[3] H. Mei, Y. Pang, R. Huang, Influence of interfacial delamination on channel cracking of elastic thin films, International Journal of Fracture, Vol. 148, No. 4, pp. 331, 2008.
[4] H. Mei, S. Gowrishankar, K. M. Liechti, R. Huang, Initiation and propagation of interfacial delamination in integrated thin-film structures, in Proceeding of, IEEE, pp. 1-8.
[5] H. Chai, J. Fox, On delamination growth from channel cracks in thin-film coatings, International Journal of Solids and Structures, Vol. 49, No. 22, pp. 3142-3147, 2012.
[6] Y. Yan, F. Shang, Cohesive zone modeling of interfacial delamination in PZT thin films, International Journal of Solids and Structures, Vol. 46, No. 13, pp. 2739-2749, 2009.
[7] A. Abdul-Baqi, E. Van der Giessen, Indentation-induced interface delamination of a strong film on a ductile substrate, Thin solid films, Vol. 381, No. 1, pp. 143-154, 2001.
[8] W. Li, T. Siegmund, An analysis of the indentation test to determine the interface toughness in a weakly bonded thin film coating – substrate system, Acta Materialia, Vol. 52, No. 10, pp. 2989-2999, 2004.
[9] M. Ostoja-Starzewski, Lattice models in micromechanics, Applied Mechanics Reviews, Vol. 55, No. 1, pp. 35-60, 2002.
[10] K. M. Crosby, R. M. Bradley, Simulations of tensile fracture in thin films bonded to solid substrates, Philosophical Magazine B, Vol. 76, No. 1, pp. 91-105, 1997.
[11] W. Vellinga, M. Van den Bosch, M. Geers, Interaction between cracking, delamination and buckling in brittle elastic thin films, International Journal of Fracture, Vol. 154, No. 1-2, pp. 195-209, 2008.
[12] P. A. Cundall, O. D. L. Strack, A discrete numerical model for granular assemblies, Géotechnique, Vol. 29, No. 1, pp. 47-65, 1979.
[13] D. O. Potyondy, P. A. Cundall, A bonded-particle model for rock, International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 8, pp. 1329-1364, 2004.
[14] N. Kusano, T. Aoyagi, J. Aizawa, H. Ueno, H. Morikawa, N. Kobayashi, Impulsive local damage analyses of concrete structure by the distinct element method, Nuclear Engineering and Design, Vol. 138, No. 1, pp. 105-110, 1992.
[15] F. K. Wittel, F. Kun, B.-H. Kröplin, H. J. Herrmann, A study of transverse ply cracking using a discrete element method, Computational Materials Science, Vol. 28, No. 3–4, pp. 608-619, 2003.
[16] F. K. Wittel, J. Schulte-Fischedick, F. Kun, B.-H. Kröplin, M. Frieß, Discrete element simulation of transverse cracking during the pyrolysis of carbon fibre reinforced plastics to carbon/carbon composites, Computational Materials Science, Vol. 28, No. 1, pp. 1-15, 2003.
[17] D. Yang, Y. Sheng, J. Ye, Y. Tan, Dynamic simulation of crack initiation and propagation in cross-ply laminates by DEM, Composites Science and Technology, Vol. 71, No. 11, pp. 1410-1418, 2011.
[18] D. Yang, J. Ye, Y. Tan, Y. Sheng, Modeling progressive delamination of laminated composites by discrete element method, Computational Materials Science, Vol. 50, No. 3, pp. 858-864, 2011.
[19] A. Khattab, M. J. Khattak, I. M. Fadhil, Micromechanical discrete element modeling of fiber reinforced polymer composites, Polymer Composites, Vol. 32, No. 10, pp. 1532-1540, 2011.
[20] M. J. Khattak, A. Khattab, Modeling tensile response of fiber‐reinforced polymer composites using discrete element method, Polymer Composites, Vol. 34, No. 6, pp. 877-886, 2013.
[21] D. André, I. Iordanoff, J.-l. Charles, J. Néauport, Discrete element method to simulate continuous material by using the cohesive beam model, Computer Methods in Applied Mechanics and Engineering, Vol. 213–216, pp. 113-125, 2012.
[22] L. Maheo, F. Dau, D. André, J. L. Charles, I. Iordanoff, A promising way to model cracks in composite using Discrete Element Method, Composites Part B: Engineering, Vol. 71, pp. 193-202, 2015.
[23] B. D. Le, F. Dau, J. L. Charles, I. Iordanoff, Modeling damages and cracks growth in composite with a 3D discrete element method, Composites Part B: Engineering, Vol. 91, pp. 615-630, 2016.
[24] D. André, B. Levraut, N. Tessier-Doyen, M. Huger, A discrete element thermo-mechanical modelling of diffuse damage induced by thermal expansion mismatch of two-phase materials, Computer Methods in Applied Mechanics and Engineering, Vol. 318, pp. 898-916, 2017.
[25] J. Rojek, Discrete element thermomechanical modelling of rock cutting with valuation of tool wear, Computational Particle Mechanics, Vol. 1, No. 1, pp. 71-84, 2014.
[26] H. Huang, B. Spencer, J. Hales, Discrete element method for simulation of early-life thermal fracturing behavior in ceramic nuclear fuel pellets, Nuclear Engineering and Design, Vol. 278, pp. 515-528, 2014.
[27] J. Rojek, E. Oñate, Multiscale analysis using a coupled discrete/finite element model, Interaction and Multiscale Mechanics, Vol. 1, No. 1, pp. 1-31, 2007.
[28] F. A. Tavarez, M. E. Plesha, Discrete element method for modelling solid and particulate materials, International Journal for Numerical Methods in Engineering, Vol. 70, No. 4, pp. 379-404, 2007.
[29] H. Kim, M. P. Wagoner, W. G. Buttlar, Simulation of fracture behavior in asphalt concrete using a heterogeneous cohesive zone discrete element model, Journal of Materials in Civil Engineering, Vol. 20, No. 8, pp. 552-563, 2008.
[30] H. Haddad, W. Leclerc, M. Guessasma, C. Pélegris, N. Ferguen, E. Bellenger, Application of DEM to predict the elastic behavior of particulate composite materials, Granular Matter, Vol. 17, No. 4, pp. 459-473, 2015.
[31] J. Beuth, Cracking of thin bonded films in residual tension, International Journal of Solids and Structures, Vol. 29, No. 13, pp. 1657-1675, 1992.