مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بهینه‌سازی و تحلیل ترمواکونومیک سیکل‌های رنکین آلی با زیرکش(RORC) برای بازیابی حرارت اتلافی دما پایین با استفاده از الگوریتم ژنتیک

نویسندگان
1 مهندسی سیستم های انرژی، دانشگاه صنعت نفت، محمود آباد، ایران
2 دانشگاه تخصصی فناوری های نوین آمل
چکیده
مدیریت گرمای اتلافی در صنایع سنگین بهره‌وری در این حوزه را به طور قابل توجهی افزایش می‌دهد. سیکل رنکین آلی به عنوان یک تکنولوژی مناسب جهت بازیافت حرارت اتلافی و تولید الکتریسیته برای منابع گرمایی با دماهای متوسط و پایین معرفی شده است. عملکرد سیکل رنکین آلی همانند سیکل رنکین معمولی می‌باشد با این تفاوت که از سیال ارگانیک با دمای جوش کم جهت بازیابی از منابع دارای دمای پایین‌تر استفاده می‌شود. در این مقاله سیکل پایه رنکین آلی (BORC) و دو سیکل رنکین آلی با زیرکش (DRORC,SRORC)، برای 5 سیال مختلف مورد تحلیل انرژی و اکسرژی قرار گرفته و در ادامه تحلیل ترمواکونومیکی و بهینه‌سازی سیکل‌های اشاره شده توسط الگوریتم ژنتیک برای منبع گرمایی با شرایط ثابت انجام گرفته است. نتایج نشان می‌دهد از بین سیال های موجود، R113بهترین عملکرد را دارا می‌باشد. مقدار فشار و دمای بهینه ورودی توربین، در مقایسه با حالتی که تنها بازده اکسرژی در نظر گرفته می‌شود کاهش می یابد. با تغییر سیکل ساده به سیکل دارای یک زیرکش در حدود12.5% و از سیکل ساده به سیکل دارای دو زیرکش حدود 18.75% تغییر در مقدار هزینه مخصوص تولید توان مشاهده می‌شود. با افزایش درجه فوق‌گرم ورودی توربین نیز مقدار هزینه مخصوص تولید توان افزایش و بازده اکسرژی سیستم کاهش می‌یابند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Thermo-economic optimization of Regenerative Organic Rankine Cycle for Low grade Waste Heat Recovery using Genetic algorithm

نویسندگان English

Shahab Yousefizadeh Dibazar 1
gholamreza Salehi 1
Seyed Mohammad Hesein Sharifi 1
Majid Eshagh Nimvari 2
1 Department of Energy Systems Engineering, Petroleum University of Technology, Mahmood Abad, Iran
2 Amol University of Special Modern Technologies
چکیده English

The waste heat management in heavy industry significantly increase productivity in this sector. Organic Rankine cycles (ORCs) are appropriate technology for the conversion of low quality thermal energy to electrical power. The Organic Rankine Cycle(ORC) applies the principle of the steam Rankine cycle, but uses organic working fluids with low boiling points can be used to recover heat from lower temperature heat sources. In this study the performances of three different organic Rankine cycles (ORCs) systems including the basic ORC (BORC) system, the single-stage regenerative ORC (SRORC) system and the double-stage regenerative ORC (DRORC) system using five different working fluids under the same waste heat condition are optimized by thermo-economic method using genetic algorithm. The results indicate that the R113 has the best performance between fluids. The optimized turbine inlet temperature and pressure in comparison with when exergy efficiency uses only, decreases. By changing basic Rankine cycle to the single-stage regenerative and the double-stage regenerative cycles, 12.5% and 18.75% change in specific power cost occurs respectively. Also results indicate that, as superheat degree in turbine inlet increases, the specific power cost increase and the exergy efficiency of system decreases.

کلیدواژه‌ها English

Organic Rankine Cycle
Waste Heat
Exergy
Thermo-economic
genetic algorithm
[1] F. Veleza, J. Segovia, M. Carmen Martin, G. Antolina, et al, A technical, Economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation, Renewable and Sustainable Energy, Vol. 16, No. 6, pp. 4175-89, 2012.
[2] B. Tchanche, Gr. Lambrinos, A. Frangoudakis, G. Papadakis et al, Low-grade heat conversion into power using organic Rankine cycles - A review of various applications, Renewable and Sustainable Energy, Vol, 15, No. 8, pp. 3963-79, 2011.
[3] S. Quoilin, M. Broek, S. Declaye, P. DewalleL et al, Teclmo-economic survey of Organic Rankine Cycle (ORC) systems, Renewable and Sustainable Energy, Vol. 22, pp. 168-86, 2013.
[4] Z. Gea, J. Lia, Q. Liva, Y. Duana, et al, Performance comparison and working fluid analysis of subcritical and transcritical dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery, Energy Conversion and Management, Vol. 74, pp. 35-43, 2013.
[5] PJ. Mago, LM. Chamra, K. Srinivasan, Ch. Somayaji, An examination of regenerative organic Rankine cycles using dry fluids, Applied Thermal Engineering, Vol. 28, No. 8, pp. 998-1007, 2008.
[6] M. Yari, Performance analysis of the different organic Rankine cycles (ORCs) using dry fluids, Exergy, Vol. 6, No. 3, pp. 323-42, 2009.
[7] M. Yari, SMS. Mahmoudi, A thermodynamic study of waste heat recovery from GTMHR using organic Rankine cycles, Heat and Mass Transfer, Vol. 47, No. 2, pp. 181-96, 2011.
[8] H. Xi, MJ. Li, C. Xu, YL. He, Parametric optimization of regenerative Organic Rankine Cycle (ORC) for low grade waste heat recovery using genetic algorithm, Energy, Vol. 58, pp. 473-82, 2013.
[9] J. P. Roy, A. Misra, Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery, Energy ,Vol. 39, pp. 227-35, 2012.
[10] S. Nisan, N. Benzarti, A comprehensive economic evaluation of integrated desalination systems using fossil fuelled and nuclear energies and including their environmental costs, Desalination, Vol. 229, pp. 125-46, 2008
[11] A. Schuster, S. Karellas, E. Kakaras, H. Spliethoff; Energetic and economic investigation of organic Rankine cycle applications, Applied Thermal Engineering, Vol. 29, pp. 1809-17, 2009.
[12] F. Mohammadkhani, Sh. Khalilarya, I. Mirzaee, Exergy and exergoeconomic analysis and optimization of diesel engine based combined heat and power (CHP) system using genetic algorithm, Exergy, Vol. 12, pp. 139-61, 2013.
[13] F. Ahmadi Boyaghchi, P. Heidamejad, Thermoeconomic assessment and multi objective optimization of a solar micro CCHP based on Organic Rankine Cycle for domestic application, Energy Conversion and Management, Vol. 97, pp. 224-234, 2015.
[14] A. Abusoglu, M. Kanoglu, Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 1 - Formulations, Applied Thermal Engineering, Vol. 29, pp. 234-41, 2009.
[15] A. G. Kaviri, M. M. Jaafar, T. M. Lazim, Modeling and multi-objective exergy based optimization of a combined cycle power plant using a genetic algorithm, Energy Conversion and Management, Vol. 58, pp. 94-103, 2012.
[16] M. Ghazi, P. Ahmadi, A. Sotoodeh, Taherkhani A, Modeling and thermoeconomic optimization of heat recovery heat exchangers using a multimodal genetic algorithm, Energy Conversion and Management, Vol. 58, pp. 149-56, 2012.
[17] A. Schuster, S. Karellas, E. Kakaras, H. Spliethoff, Energetic and economic investigation of Organic Rankine Cycle applications, Applied Thermal Engineering Vol. 29, pp. 1809-17, 2009.
[18] Z. Hajabdollahi, F. Hajabdollahi, M. Tehrani, H. Hajabdollahi, Thermo-economic environmental optimization of Organic Rankine Cycle for diesel waste heat recovery, Energy, Vol. 63, pp. 142-51, 2013.
[19] K. Javaherdeh, M. Amin Fard, M. Zoghi, Thermo-economic analysis of organic Rankine cycle with cogeneration of heat and power operating with solar and geothermal energy in Ramsar, Modares Mechanical Engineering, Proceedings of the Second International Conference on Air-Conditioning, Heating and Cooling Installations, Vol. 16, No. 13, pp. 56-63, 2016. (in Persian
[20] N. Lior, N. Zhang, Energy, exergy, and second law performance criteria, Energy , Vol. 32, pp. 281-96, 2007. [21] Y. P. Dai, J. F. Wang, L. Gao, Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery, Energy Conversion and Management , Vol. 50, pp. 576-82, 2009.
[22] J. P. Roy, M. K. Mishra, A. Misra, Parametric optimization and performance analysis of a waste heat recovery system using organic Rankine cycle, Energy, Vol. 35, pp. 5049-62, 2010.
[23] A. Abusoglu, M. Kanoglu, Exergoeconomic analysis and optimization of combined heat and power production: A review, Renewable and Sustainable Energy, Vol. 13, pp. 2295-308, 2009.
[24] A. Lazzaretto, G. Tsatsaronis, SPECO: A systematic and generalmethodology for calculating efficiencies and costs in thermal systems, Energy, Vol. 31, pp. 1257-89, 2006. [25] N. Shokati, F. Mohammadkhani, M. Yari, S. M. S. Mahmoudi, et al, A comparative exergoeconomic analysis of waste heat recovery from a gas turbine-modular helium reactor via organic Rankine cycles, Sustainability, Vol. 6, pp. 2474-89, 2014.
[26] P. Ahmadi, I. Dincer, Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant. Applied Thermal Engineering, Vol. 31, pp. 2529-40, 2011.
[27] P. Ahmadi, I. Dincer, M. A. Rosen, Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants, Energy, Vol. 36, pp. 5886-98, 2011. [28] Y. H. Kwon, H. Y. Kwak, S. D. Oh, Exergoeconomic analysis of gas turbine cogeneration systems, Exergy, Vol. 1, pp. 31-40, 2001. [29] A. Bejan, G. Tsatsaronis, M. Moran, Thermal Design and Optimization, pp. 406-458, New York: John Wiley and Sons, 1996.
[30] V. Zare, S. M. S. Mahmoudi, M. Yari, M. Amidpour, Thermoeconomic analysis and optimization of an ammonia-water power/cooling cogeneration cycle, Energy, Vol. 47, pp. 271-83, 2012. [31] M. Gtirttirk, H. F. Oztop, A. Hepbasli, Comparison of exergoeconomic analysis of two different perlite expansion furnaces, Energy, Vol. 80, pp. 589-98, 2015.
[32] M. Khaljani, R. Khoshbakhti Saray , K. Bahlouli, Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle, Energy Conversion and Management, Vol. 97, pp. 154-165, 2015.
[33] S. Anvari, H. Taghavifar, A. Parvishi, Thermo-economical consideration of Regenerative organic Rankine cycle coupling with the absorption chiller systems incorporated in the trigeneration system, Energy Conversion and Management, Vol. 148, pp. 317-329, 2017.