[1] B. Kinsey, Z. Liu, J. Cao, A novel forming technology for tailor-welded blanks, Journal of Materials Processing Technology, Vol. 99, No. 1–3, pp. 145–153, 2000.
[2] Y. M. Heo, S. H. Wang, H. Y. Kim, D. G. Seo, The effect of the drawbead dimensions on the weld-line movements in the deep drawing of tailor-welded blanks, Journal of Materials Processing Technology, Vol. 113, No. 1–3, pp. 686–691, 2001.
[3] S. M. Chan, L. C. Chan, T. C. Lee, Tailor-welded blanks of different thickness ratios effects on forming limit diagrams, Journal of Materials Processing Technology, Vol. 132, No. 1, pp. 95–101, 2003.
[4] M. T. Browne, M. T. Hillery, Optimising the variables when deep-drawing CR 1 cups, Journal of Materials Processing Technology, Vol. 136, No. 1–3, pp. 64–71, 2003.
[5] R. Padmanabhan, A. J. Baptista, M. C. Oliveira, L. F. Menezes, Effect of anisotropy on the deep-drawing of mild steel and dual-phase steel tailor-welded blanks, Journal of Materials Processing Technology, Vol. 184, No. 1–3, pp. 288–293, 2007.
[6] W. Chen, G. S. Lin, S. J. Hu, A comparison study on the effectiveness of stepped binder and weld line clamping pins on formability improvement for tailor-welded blanks, Journal of Materials Processing Technology, Vol. 207, No. 1–3, pp. 204–210, 2008.
[7] D. Sanders, P. Edwards, G. Grant, M. Ramulu, A. Reynolds, Superplastically formed friction stir welded tailored aluminum and titanium blanks for aerospace applications, Journal of Materials Engineering and Performance, Vol. 19, No. 4, pp. 515–520, 2010.
[8] J. Sinke, A. A. Zadpoor, R. Benedictus, Tailor made blanks for the aerospace industry, Tailor Welded Blanks for Advanced Manufacturing, Vol. 10, No. 1, pp. 181–201, 20111.
[9] M. Abbasi, M. Ketabchi, T. Labudde, U. Prahl, W. Bleck, New attempt to wrinkling behavior analysis of tailor welded blanks during the deep drawing process, Materials and design, Vol. 40, No. 1, pp. 407–414, 2012.
[10] R. Safdarian Korouyeh, H. Moslemi Naeini, G. Liaghat, Forming limit diagram prediction of tailor-welded blank using experimental and numerical methods, Journal of Materials Engineering and Performance, Vol. 21, No. 10, pp. 2053–2061, 2012.
[11] A. Fazli, Optimum tailor-welded blank design using deformation path length of boundary nodes, International Journal of Automotive Engineering, Vol. 3, no. 2, pp. 435-445, 2013.
[12] S. M. Hamidinejad, M. H. Hasanniya, N. Salari, E. Valizadeh, CO2
laser welding of interstitial free galvanized steel sheets used in tailor welded blanks, International Journal of Advanced Manufacturing Technology, Vol. 64, No. 1–4, pp. 195–206, 2013.
[13] R. Safdarian Korouyeh, H. Moslemi Naeini, M. G. Torkamany, H. Liaghat, Experimental and theoretical investigation of thickness ratio effect on the formability of tailor welded blank, Optics & Laser Technology, Vol. 51, No. 1, pp. 24–31, 2013.
[14] Y. Song, L. Hua, Influences of thickness ratio of base sheets on formability of tailor welded blanks, Procedia Engineering, Vol. 81, No. 1, pp. 730–735, 2014.
[15] J. Han, SH. Natsume, S. Kitayama, K. Yamazaki, Optimization of pulsating blank holder force for deep drawing of cylindrical cups, 11th World Congress on Structural and Multidisciplinary Optimisation, Sydney, Australia, June 12-14, 2015.
[16] K. Bandyopadhyay, S. K. Panda, P. Saha, G. Padmanabham, Limiting drawing ratio and deep drawing behavior of dual phase steel tailor welded blanks: FE simulation and experimental validation, Journal of Materials Processing Technology, Vol. 217, No. 1, pp. 45-64, 2015.
[17] V. V. N. S. Suresh, S. P. Regalla, A. K. Gupta, G. Padmanabham, Weld line shift in the case of tailor welded blanks subjected to differential strengths with respect to TIG and laser welding, Materials Today: Proceedings, Vol. 2, No. 4-5, pp. 3501–3510, 2015.
[18] M. Moradi, M. Ghoreishi, A. Rahmani, Numerical and experimental study of geometrical dimensions on laser-TIG hybrid welding of stainless steel 1.4418, Journal of Modern Processes in Manufacturing and Production, Vol. 5, No. 2, pp. 21–31, 2016.
[19] J. S. Dias, T. C. Chuvas, M. P. C. Fonseca, Evaluation of residual stresses and mechanical properties of IF steel welded joints by laser and plasma processes, Materials Research, Vol. 19, No. 3, pp. 1980-5373, 2016.
[20] M. M. Moradi, H. Jamshidi Aval, R. Jamaati, Experimental investigation on the effect of friction stir welding process parameters in dissimilar joining of AA2024-T351 and AA6061-T6 aluminum alloys, Modares Mechanical Engineering, Vol. 16, No. 9, pp. 394-402, 2016. (in Persianفارسی )
[21] H. Wang, B. Feng, G. Song, L. Liu, Laser-arc hybrid welding of high-strength steel and aluminum alloy joints with brass filler, Materials and Manufacturing Processes, Vol. 33, No. 7, pp. 735-742, 2017.
[22] E. A. Mahmoud, K. A. M. Ragab, N. E. Mohamed, Experimental investigation of formability of Al-1050 tailor-welded blanks, The International Journal of Advanced Manufacturing Technology, Vol. 89, No. 1-4, pp. 791–801, 2017.
[23] G. Barbieri, F. Cognini, M. Moncada, A. Rinaldi, G. Lapi, Welding of automotive aluminum alloys by laser wobbling processing, Materials Science Forum, Vol. 879, No. 1, pp. 1057–1062, 2017.
[24] M. Moradi, M. Ghoreishi, A. Khorram, Process and outcome comparison between laser, tungsten inert gas (TIG) and laser-TIG hybrid welding, Lasers in Engineering, Vol. 39, No. 3-6, pp. 379-391, 2018.
[25] V. T. Meinders, H. Huetink, A. Berg, Deep drawing simulations of tailored blanks and experimental verification, International Journal of Materials Processing Technology, Vol. 103, No. 1, pp. 65-73, 2000.
[26] R. M. Leal, B. M. Chaparro, J. M. Antunes, P. Vilaça, Mechanical behaviour of fsw aluminium tailored blanks, Materials Science Forum, Vol. 587, No. 1, pp. 961-965, 2008.