مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تجربی استحکام و عمق کشش ورقهای ترکیبی جوشکاری شده به روشهای اصطکاکی اغتشاشی و قوس تنگستن

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشکده مهندسی مکانیک، دانشگاه تهران، تهران
2 دانشکده مهندسی مکانیک، پردیس دانشکده های فنی دانشگاه تهران، تهران
چکیده
به علت توسعه استفاده از ورق‌های ترکیبی در صنعت حمل‌ونقل، درک رفتار شکل‌پذیری آن‌ها برای تولید محصولاتی باکیفیت بالا در فرآیندهای شکل‌دهی به‌ویژه کشش عمیق، اهمیت بالایی پیداکرده است. با توجه به استحکام متفاوت مواد پایه و وجود منطقه جوش، شکل­پذیری ورق­های ترکیبی غالباً کمتر از فلزات پایه است. مقایسه جابه‌جایی خط جوش و عمق کشش ورق­های ترکیبی تولید شده با دو روش جوشکاری لیزر و جوشکاری اصطکاکی اغتشاشی، از جمله اهداف این پژوهش می­باشد. به علت ایجاد منطقه محدودتر متاثر از حرارت و سوراخ کلیدی مناسب، جوشکاری لیزر نسبت به سایر روش­های جوشکاری برای تولید این ورق­ها در اولویت است. پارامترهای فرآیند جوشکاری اصطکاکی اغتشاشی به دلیل تأثیر زیاد بر تغییرات پیچیده ناحیه پلاستیک و متاثر شدن الگوی سیلان ماده و توزیع دما در ورق­های ترکیبی، بسیار با اهمیت می‌باشند. در این مقاله، با طراحی آزمایش­های تجربی، تاثیر نیروی ورق­­گیر و سرعت خطی جوشکاری بر عمق کشش و جابه‌جایی خط جوش ورق­های ترکیبی بررسی شده است. همچنین سختی ناحیه جوش حاصل از این فرآیندها مورد بررسی و مقایسه قرار گرفته است. نتایج نشان می دهد که با افزایش سرعت خطی جوشکاری لیزر، میزان عمق کشش و جابه‌جایی خط جوش افزایش یافته است. با افزایش سرعت خطی جوشکاری اصطکاکی اغتشاشی نیز میزان جابجایی خط جوش و عمق کشش افزایش یافته است. همچنین سختی ناحیه جوش لیزر بیشتر از سختی ناحیه مربوط به جوش اصطکاکی می­باشد.
کلیدواژه‌ها

عنوان مقاله English

Experimental Study of Drawing Depth and Weld Line Movement in TWBs Sheets Manufactured by Laser and Friction Stir Welding

نویسندگان English

Ahmad Amin zadeh 1
Amir Safari 1
Ali Parvizi 2
1 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
2 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
چکیده English

Due to higher demands for tailor welded blanks (TWBs) applications in transportation industry, it is worthy to understand their forming characteristics in manufacturing processes, especially the deep drawing, in order to produce products with higher qualities. Due to differences between the base materials strength as well as existence of the welding zone, the formability of TWBs is frequently less than the base metals. Comparison of weld line movement and drawing depth in TWBs designed and produced by laser welding and friction stir welding are the aims of this study. Because of creation of limited heat affected zone area and suitable keyhole, laser welding is more appropriate for TWBs production comparing to the other welding processes. The parameters of the friction stir welding process are very important due to having high influence on complicated plastic zone variation, material flow pattern and temperature distribution in TWBs sheets. In this paper, having designed the experiments, the effect of blank holder force and linear welding velocity on drawing depth and weld line displacement of TWBs have been investigated. Moreover, the harnesses of the weld zone in both processes have been examined. Results show that by increasing the linear velocity of laser welding, the amount of weld line displacement and drawing depth will be increased. Furthermore, the higher linear velocity of friction stir welding will result into the higher weld line displacement and drawing depth. Likewise, the harnesses of the laser welding zone are higher than those ones for friction stir welding zone.

کلیدواژه‌ها English

Laser Welding
Friction Stir Welding
Tailor Welded Blanks (TWBs)
Weld Line Movement
[1] B. Kinsey, Z. Liu, J. Cao, A novel forming technology for tailor-welded blanks, Journal of Materials Processing Technology, Vol. 99, No. 1–3, pp. 145–153, 2000.
[2] Y. M. Heo, S. H. Wang, H. Y. Kim, D. G. Seo, The effect of the drawbead dimensions on the weld-line movements in the deep drawing of tailor-welded blanks, Journal of Materials Processing Technology, Vol. 113, No. 1–3, pp. 686–691, 2001.
[3] S. M. Chan, L. C. Chan, T. C. Lee, Tailor-welded blanks of different thickness ratios effects on forming limit diagrams, Journal of Materials Processing Technology, Vol. 132, No. 1, pp. 95–101, 2003.
[4] M. T. Browne, M. T. Hillery, Optimising the variables when deep-drawing CR 1 cups, Journal of Materials Processing Technology, Vol. 136, No. 1–3, pp. 64–71, 2003.
[5] R. Padmanabhan, A. J. Baptista, M. C. Oliveira, L. F. Menezes, Effect of anisotropy on the deep-drawing of mild steel and dual-phase steel tailor-welded blanks, Journal of Materials Processing Technology, Vol. 184, No. 1–3, pp. 288–293, 2007.
[6] W. Chen, G. S. Lin, S. J. Hu, A comparison study on the effectiveness of stepped binder and weld line clamping pins on formability improvement for tailor-welded blanks, Journal of Materials Processing Technology, Vol. 207, No. 1–3, pp. 204–210, 2008.
[7] D. Sanders, P. Edwards, G. Grant, M. Ramulu, A. Reynolds, Superplastically formed friction stir welded tailored aluminum and titanium blanks for aerospace applications, Journal of Materials Engineering and Performance, Vol. 19, No. 4, pp. 515–520, 2010.
[8] J. Sinke, A. A. Zadpoor, R. Benedictus, Tailor made blanks for the aerospace industry, Tailor Welded Blanks for Advanced Manufacturing, Vol. 10, No. 1, pp. 181–201, 20111.
[9] M. Abbasi, M. Ketabchi, T. Labudde, U. Prahl, W. Bleck, New attempt to wrinkling behavior analysis of tailor welded blanks during the deep drawing process, Materials and design, Vol. 40, No. 1, pp. 407–414, 2012.
[10] R. Safdarian Korouyeh, H. Moslemi Naeini, G. Liaghat, Forming limit diagram prediction of tailor-welded blank using experimental and numerical methods, Journal of Materials Engineering and Performance, Vol. 21, No. 10, pp. 2053–2061, 2012.
[11] A. Fazli, Optimum tailor-welded blank design using deformation path length of boundary nodes, International Journal of Automotive Engineering, Vol. 3, no. 2, pp. 435-445, 2013.
[12] S. M. Hamidinejad, M. H. Hasanniya, N. Salari, E. Valizadeh, CO2
laser welding of interstitial free galvanized steel sheets used in tailor welded blanks, International Journal of Advanced Manufacturing Technology, Vol. 64, No. 1–4, pp. 195–206, 2013.
[13] R. Safdarian Korouyeh, H. Moslemi Naeini, M. G. Torkamany, H. Liaghat, Experimental and theoretical investigation of thickness ratio effect on the formability of tailor welded blank, Optics & Laser Technology, Vol. 51, No. 1, pp. 24–31, 2013.
[14] Y. Song, L. Hua, Influences of thickness ratio of base sheets on formability of tailor welded blanks, Procedia Engineering, Vol. 81, No. 1, pp. 730–735, 2014.
[15] J. Han, SH. Natsume, S. Kitayama, K. Yamazaki, Optimization of pulsating blank holder force for deep drawing of cylindrical cups, 11th World Congress on Structural and Multidisciplinary Optimisation, Sydney, Australia, June 12-14, 2015.
[16] K. Bandyopadhyay, S. K. Panda, P. Saha, G. Padmanabham, Limiting drawing ratio and deep drawing behavior of dual phase steel tailor welded blanks: FE simulation and experimental validation, Journal of Materials Processing Technology, Vol. 217, No. 1, pp. 45-64, 2015.
[17] V. V. N. S. Suresh, S. P. Regalla, A. K. Gupta, G. Padmanabham, Weld line shift in the case of tailor welded blanks subjected to differential strengths with respect to TIG and laser welding, Materials Today: Proceedings, Vol. 2, No. 4-5, pp. 3501–3510, 2015.
[18] M. Moradi, M. Ghoreishi, A. Rahmani, Numerical and experimental study of geometrical dimensions on laser-TIG hybrid welding of stainless steel 1.4418, Journal of Modern Processes in Manufacturing and Production, Vol. 5, No. 2, pp. 21–31, 2016.
[19] J. S. Dias, T. C. Chuvas, M. P. C. Fonseca, Evaluation of residual stresses and mechanical properties of IF steel welded joints by laser and plasma processes, Materials Research, Vol. 19, No. 3, pp. 1980-5373, 2016.
[20] M. M. Moradi, H. Jamshidi Aval, R. Jamaati, Experimental investigation on the effect of friction stir welding process parameters in dissimilar joining of AA2024-T351 and AA6061-T6 aluminum alloys, Modares Mechanical Engineering, Vol. 16, No. 9, pp. 394-402, 2016. (in Persianفارسی )
[21] H. Wang, B. Feng, G. Song, L. Liu, Laser-arc hybrid welding of high-strength steel and aluminum alloy joints with brass filler, Materials and Manufacturing Processes, Vol. 33, No. 7, pp. 735-742, 2017.
[22] E. A. Mahmoud, K. A. M. Ragab, N. E. Mohamed, Experimental investigation of formability of Al-1050 tailor-welded blanks, The International Journal of Advanced Manufacturing Technology, Vol. 89, No. 1-4, pp. 791–801, 2017.
[23] G. Barbieri, F. Cognini, M. Moncada, A. Rinaldi, G. Lapi, Welding of automotive aluminum alloys by laser wobbling processing, Materials Science Forum, Vol. 879, No. 1, pp. 1057–1062, 2017.
[24] M. Moradi, M. Ghoreishi, A. Khorram, Process and outcome comparison between laser, tungsten inert gas (TIG) and laser-TIG hybrid welding, Lasers in Engineering, Vol. 39, No. 3-6, pp. 379-391, 2018.
[25] V. T. Meinders, H. Huetink, A. Berg, Deep drawing simulations of tailored blanks and experimental verification, International Journal of Materials Processing Technology, Vol. 103, No. 1, pp. 65-73, 2000.
[26] R. M. Leal, B. M. Chaparro, J. M. Antunes, P. Vilaça, Mechanical behaviour of fsw aluminium tailored blanks, Materials Science Forum, Vol. 587, No. 1, pp. 961-965, 2008.