مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه تجربی و عددی برداشت انرژی از بارگذاری هارمونیک وارد بر بال میکروپهپادهای دارای نسبت منظری بالا

نویسندگان
گروه مهندسی مکانیک، واحد نجف‌آباد، دانشگاه آزاد اسلامی
چکیده
در این پژوهش با استفاده از مواد پیزوالکتریک یک میکرو ژنراتور به‌منظور تأمین انرژی مدارهای الکتریکی یک میکروپهپاد طراحی شده است. برای این منظور، یک بال کامپوزیتی کامل هواپیما شامل تمامی اجزای سازه‌ای آن مانند ریب‌ها، اسپارها و پوسته‌ها به کمک نرم‌افزار COMSOL multiphysics طراحی شد. بر روی اسپار این بال یک قطعه از جنس پیزوالکتریک مدل‌سازی شده است. این بال به‌صورت تیر یکسر گیردار مدل شده که انتهای آن با فرکانس‌ها و دامنه‌های مشخص به صورت نوسانی تحریک می‌شود. در طی نوسان، میزان تنش و کرنش اجزای بال با استفاده از روش المان محدود کسب شده و اختلاف‌پتانسیل با کوپل معادلات حاکم پیزوالکتریک با کرنش‌ها محاسبه شده است. پس‌ازآن، یک مدل آزمایشگاهی با مشخصات کاملاً مشابه با مدل عددی ساخته شده و مورد آزمایش قرار گرفته است. به‌منظور صحت سنجی، نتایج به‌دست‌آمده از حل عددی با نتایج حاصل از آزمایش تجربی مقایسه شده‌اند. سپس اثر متغیرهایی همچون نسبت منظری بال، ابعاد مواد پیزوالکتریک و ضخامت اسپار بر میزان اختلاف‌پتانسیل ایجادشده مورد مطالعه قرار گرفته است. در نهایت، نتایج به‌دست‌آمده موردبحث و بررسی قرارگرفته‌اند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental and numerical studies on energy harvesting from harmonic loads acting upon the wings of high aspect ratio MAVs

نویسندگان English

roohollah yeganeh
Seyed Amin Bagherzadeh
Mehdi Salehi
Mechanics,Technical Engineering,Islamic Azad,najafabad,iran
چکیده English

In this study, a microgenerator is designed to supply the energy needed for electrical circuits of a MAV using piezoelectric materials. For this purpose, a composite airplane wing including all structural elements such as the ribs, spars and skins was designed in COMSOL multiphysics software. On the spar of this wing, a piezoelectric piece is modeled. The wing is modeled as a cantilever beam that its end is excited in an oscillatory manner with given frequencies and amplitudes. During the oscillation, the stress and strain of the wing elements are obtained using the finite element method and the amount of the generated voltage is calculated by coupling the piezoelectric governing equations with the strains. Next, an experimental model is created with the same characteristics of the numerical model and tested. The results of the numerical solution are compared with the results of the experimental tests for the verification. Afterwards, the effects of parameters such as the aspect ratio, the size of piezoelectric materials and the spar thickness on the generated voltage are studied. Finally, the results have been discussed.

کلیدواژه‌ها English

Piezoelectric
MAV
Energy harvesting
Aspect Ratio
[1] A. J. Chorin, A numerical method for solving incompressible viscous flow problems, Journal of Computational Physics, Vol. 2, pp. 12– 26, 1967.
[2] D. Kwak, C. Kiris, C. S. Kim, Computational challenges of viscous incompressible flows, Computers & Fluids, Vol. 34, pp. 283–299, 2005.
[3] D. Drikakis, P. A. Govatsos, D. E. Papantonis, A characteristic based method for incompressible flows, International Journal for Numerical Methods in Fluids, Vol. 19, pp. 667-685, 1994.
[4] Y. Zhao, B. Zhang, A high-order characteristics upwind FV method for incompressible flow and heat transfer simulation on unstructured grids, Computer Methods in Applied Mechanics and Engineering, Vol. 190, pp. 733-756, 2000.
[5] D. Drikakis, A parallel multiblock characteristic based method for three-dimensional incompressible flows, Advances in Engineering Software, Vol. 26, pp. 111-119, 1996.
[6] P. Nithiarasu, C. B. Liu, An artificial compressibility based characteristic based split (CBS) scheme for steady and unsteady turbulent incompressible flows, Computer Methods in Applied Mechanics and Engineering, Vol. 195, pp. 2961-2982, 2006.
[7] P. Nithiarasu, O. C. Zienkiewicz, Analysis of an explicit and matrix free fractional step method for incompressible flows, Computer Methods in Applied Mechanics and Engineering, Vol. 195, pp. 5537-5551, 2006.
[8] H. Sauerwein, The method of characteristics for the three-dimensional unsteady magnetofluid dynamics of a multi-component medium, Journal of Fluid Mechanics, Vol. 25, pp. 17-41, 1966.
[9] C. Lacor, Ch. Hirsch, Genuinely upwind algorithms for the multidimensional Euler equations, AIAA journal, Vol. 30, No. 1, 1991.
[10] P. L. Roe, Discrete models for the numerical analysis of time dependent multidimensional gas dynamics, Journal of Computational Physics, Vol. 63, No. 2, pp. 458-476, 1986.
[11]Y. Guo, R. Liu, Characteristic-based finite volume scheme for 1D Euler equations, Journal of Applied Mathematics and Mechanics, Vol. 30, pp. 303-312, 2009.
[12] E. Shapiro, D. Drikakis, Non-conservative and conservative formulations of characteristics-based numerical reconstructions for incompressible flows, International Journal for Numerical Methods in Engineering, Vol. 66, pp. 1466-1482, 2006.
[13] N. Massarotti, F. Arpino, R. W. Lewis, P. Nithiarasu, Explicit and semi-implicit CBS procedures for incompressible viscous flows, International Journal for Numerical Methods in Engineering, Vol. 66, pp. 1618-1640, 2006.
[14] S. E. Razavi, K. Zamzamian, A. Farzadi, Genuinely multidimensional characteristic-basead scheme for incompressible flows, International Journal of Numerical Methods in Fluids, Vol. 57, pp. 929-949, 2008.
[15] K. Zamzamian, S.E. Razavi, Multidimensional upwinding for incompressible flows based on characteristics, Journal of computational physics, Vol. 227, pp. 8699-8713, 2008.
[16] S. E. Razavi, Far field boundary conditions for computation of compressible aerodynamic flows, Ph.D. thesis, Department of Mechanical Engineering, McGill university, Montreal, Canada, 1995.
[17] M. J. Zacrow, J. D. Hoffman, Gas Dynamics, Vol. II, John Wiley and Sons, 1976.
[18]R. Iwatsu, J.M. Hyun, K. Kuwahara. Mixed convection in a driven cavity with a stable vertical temperature gradient, International Journal of Heat Mass Transfer, Vol. 36, pp. 1601-1608, 1993.
[19] J. Choi, R. C. Oberoi, J. R. Edwards, J. A. Rosati, An immersed boundary method for complex incompressible flows, Journal of Computational Physics, Vol. 224, pp. 757–784, 2007.
[20]L. Baranyi, Computation of unsteady momentum and heat transfer from a fixed circular cylinder in laminar flow, Journal of Computational and Applied Mechanics, Vol. 4, pp. 13-25, 2003.
[21]H. A. Karamers, Heat transfer from spheres to following media, Physica, Vol. 12, pp. 61-80, 1946.
[22]R. M. Fand, Heat transfer by forced convection from a cylinder to water in crossflow, International Journal of Heat Mass Transfer, Vol. 8, pp. 955-1010, 1965.
[23]S. Whitaker, Forced convection heat transfer calculations for flow in pipes, past flat plate, single cylinder, and for flow in packed beds and tube bundles, American Institute of Chemical Engineers Journal, Vol. 18, pp. 361-371, 1972.
[24]H. C. Perkins, G. Leppert, Local heat-transfer coefficients on a uniformly heated cylinder, International Journal of Heat Mass Transfer, Vol. 7, pp. 143-158, 1964.
[25]S. W. Churchill, M. Bernstein, A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow, Journal of Heat Transfer, Vol. 99, pp. 300-306, 1977.
[26]T. W. H. Sheu, H. F. Ting, R. K. Lin, An immersed boundary method for the incompressible Navier–Stokes equations in complex geometry, International Journal for Numerical Methods in Engineering, Vol. 56, pp. 877–898, 2008.
[27]Lima E. Silva ALF, A. Silverira-Neto, J. J. R. Damasceno, Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, Journal of Computational Physics, Vol. 189, pp. 351–370, 2003.