مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی مفهومی بهینه حامل فضایی سرنشین‌دار با رویکرد طراحی ماژولار و آنالیز حساسیت

نویسنده
پژوهشگاه هوافضا
چکیده
هدف از این مقاله، ارائه مدل طراحی بهینه حامل فضایی سرنشین‌دار با رویکرد ترکیبی طراحی ماژولار (با استفاده از خوشه‌بندی موتورهای موجود برای تولید نیروی تراست) و آنالیز حساسیت (در صورت عدم‌توانمندی موتورهای موجود، اکتساب توانمندی لازم با تغییر پارامتر یا پارامترهایی)، می‌باشد. این روش طراحی با توجه به نیاز موجود در کشور برای طرح ملی اعزام انسان به فضا (مدار پایین زمین) طبق سند بالادستی (سند جامع توسعه هوافضای کشور) صورت پذیرفته‌است. برای این منظور در این روش، ضمن بهره‌گیری توامان از روش‌های آماری و پارامتریک (بهینه‌سازی پارامترهای اصلی حامل)، مشخصات سطح تراست بهینه با توجه به سه الزام اساسی (الزام تعداد مراحل، الزام تعداد موتور در خوشه‌بندی و الزام حداکثر شتاب محوری) حاکم بر ریسک و شتاب محوری حامل‌های فضایی سرنشین‌دار تعیین می‌شود. در این مقاله، آنالیز حساسیت با هدف بررسی میزان تاثیر پارامترهای اصلی طراحی بر قابلیت‌های انرژتیک حامل فضایی صورت پذیرفته است. برای بهینه‌سازی و جستجوی فضای طراحی از الگوریتم ژنتیک استفاده شده است. در نهایت برای ارزیابی روش طراحی پیشنهادی و قابلیت‌های جرمی – انرژتیک حامل فضایی، نتایج دو روش آماری و بهینه برای انجام ماموریت مشخص، مقایسه و صحه‌گذاری شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimal Manned Space Launch System Conceptual Design with Modular Design and Sensitivity Analysis Approach

چکیده English

The purpose of this article is to optimal manned space launch system conceptual design methodology with combination of modular design (by using clustering the existing motors to provide the thrust force) and sensitivity analysis (by varying the affected parameters to achieve the capability) approach. This methodology is implemented according to the human departure to space program and higher strategy document (country’s aerospace development comprehensive document). To this end, in the methodology is utilized both of the statistical and parametric (the space launch system optimized main parameters) methodologies, is determined the optimum thrust level based on the three fundamental requirements (number of stages, number of engines in clustering and maximum axial acceleration). These fundamental requirements are affected on risk and manned space launch system axial acceleration. In the paper, the purpose of sensitivity analysis is to determine of value of effective of main design parameters on space launch system capabilities. The method for optimizing and design space searching is utilized from Genetic Algorithm (GA). Finally, the suggested methodology and mass – energy capabilities will be verified by comparing the results of two methodology (statistical and optimal) to achieve the specific mission.

کلیدواژه‌ها English

Conceptual Design
optimal
Space Launch System
Manned
Modular and Sensitivity Analysis Approach
[1]The comprehensive documents for developing aerospace of country approved in 728ththe supreme cultural-revolution council, 2013.(in Persian: فارسی)
[2] NASA's Exploration System Architecture Study, Nov. 2005.
[3] A. P. Sage, Methodology for Large-Scale Systems, McGraw-Hill, 1977.
[4] T. A. Heppenheimer, History of the Space Shuttle, Smithsonian Institution Press, vol. 1 & 2, 2002.
[5] R. Williamson, Developing the space shuttle, NASA SP-4407, May 2001.
[6] V. N. Kobolov, A. G. Milovanov, Space Vehicle Transportation Systems, Restart Publication, Moscov, 2009 (In Russia).
[7] W. Braun, Apollo: Expeditions to the Moon, ch. Saturn the Giant, NASA, 1975.
[8] Manned Lunar Landing Program Mode Comparison, NASA, Washington D.C., 30 Jul. 1962.
[9] J. Fragola, Risk management in US manned spacecraft: From Apollo to Alpha and beyond, ESA, Product Assurance Symposium and Software Product Assurance Workshop, Mar. 1996.
[10] E. P. Cornell, R. Dillon, Probabilistic risk analysis for the NASA space shuttle: a brief history and current work, Reliability Engineering and System Safety, pp. 345–352, Dec. 2001.
[11] C. Murray, C. Box, Apollo: The Race to the Moon. New York, NY: Simon & Schuster Inc., 2000.
[12] NASA, Washington D.C., Report of the Space Task Group, 1969.
[13] J. Blair, Launch vehicle design process: Characterization, technical integration, and lessons learned, Technical Report, May 2001.
[14] M. K. Goodrich, A. R. Buchalter, Patrick M. Miller, Toward a History of the Space Shuttle, An Annotated Bibliography, Part 2, 1992-2011,NASA SP-2012-4549, 2012.
[15] R. Williamson, Developing the space shuttle, NASA SP-4407, May 2001.
[16] W. J. Rothschild, D. A. Boyd, E. M. Henderson, Shuttle Derived Launch Vehicle Concepts, AIAA Conference, 2005.
[17] J. Starzyk, PROTON, Launch Service Panel Satellite & Space Submit, 21-May-2013.
[18] Khrunichev Center ANGARA Launch Vehicles Family.htm, https://en.wikipedia.org/wiki/Angara_%28rocket_family%29
[19] M. Mirshams, H Karimi, H. Naseh, Multi-stage liquid propellant launch vehicle conceptual design based on combinatorial optimization of major design parameters, Journal of Space Science & Technology (JSST), Vol. 1, No. 1, pp. 21-36, 2008. (in Persian فارسی).
[20] M. Mirshams, H Karimi, H. Naseh, Multi-stage liquid propellant launch vehicle conceptual design (LVCD) software based on combinatorial optimization of major design parameters, Journal of Space Science & Technology (JSST), Vol. 1, No. 2, pp. 17-25, 2009. (in Persianفارسی).
[21] M. Mirshams, H. Naseh, H. Taei, H. R. Fazeley, Liquid propellant engine conceptual design by using a fuzzy-multi-objective genetic algorithm (MOGA) optimization method, Journal of Aerospace Engineering, vol. 228, No. 14, pp 2587-2603, 2014.
[22] M. Mirshams, H. Naseh, H. R. Fazeley, Multi-objective Multidisciplinary design of Space Launch System using Holistic Concurrent Design, Journal of Aerospace, Science and Technology, Volume 33, Issue 1, pp 40–54, 2014.
[23] H. R. Fazeli, H. Taei, H. Naseh, M. Mirshams, A multi-objective, multidisciplinary design optimization methodology for the conceptual design of a spacecraft bi-propellant propulsion system, Journal of Structural and Multidisciplinary Optimization, Vol. 53, No. 1, pp. 145–160, 2015.
[24] H. Naseh, Comparing the launch vehicle multidisciplinary design optimization frameworks, Journal of Knowledge & Technology in Aerospace, Malek Ashtar University of Technology, Vol. 5, No. 3, pp. 7-18, 1395 (in Persian فارسی).
[25] H. Naseh, Space Launch System Family’s Technology Development Model from Propulsion Aspect with Cost Approach, Journal of Space Science & Technology (JSST), Vol. 9, No. 4, pp. 1-15, 1395 (in Persian فارسی).
[26] H. Naseh, Space Systems (Space Launch System) Modernization Model from Propulsion Systems Approaches, Technical Reports, Aerospace Research Institute (ARI), ARI-94-30-ASG-MMM-1-1, 1394. (in Persian فارسی)
[27] M. Mirshams, H. Naseh, M. Mirdamadian, Sensivity Analysis of Liquid Engine system parameters on Space Launch System ballistic characteristics, The 1st Symposium on Space Launch System, K.N.Toosi University of Technology, 12-13 Nov., 2011. (in Persian فارسی).
[28] H. Joveini, Safireomid, Azarioon Book Company, 2009 (in Persian فارسی).
[29] A. J. Keane, P. B. Nair, Computational Approaches for Aerospace Design The Pursuit of Excellence, John Wiley & Sons, Ltd, 2005.