مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

توسعه یک حلگر لزج تمام-سرعت بر پایه الگوریتم رو به باد "رو" در ساختار بی‌سازمان

نویسندگان
1 تهرانپارس دانشکده هوافضا دانشگاه خواجه نصیر
2 استاد- تهران پارس,دانشکده هوافضا دانشگاه خواجه نصیر
چکیده
چکیده در این مقاله یک حلگر لزج در دامنه کلی جریانات کم سرعت و پرسرعت بر پایه الگوریتم رو به باد "رو" در ساختار شبکه بی سازمان توسعه داده شده است. در روش ارایه شده، سختی معادلات حاکم در شکل تراکم پذیر در سرعتهای پایین با استفاده از فرم پیش شرط کاهش می یابد. درمحاسبه لزجت مصنوعی روش رو به باد "رو" نیاز به عملیات ضربهای ماتریسی می باشد که این کار هزینه محاسبات را بالا می برد. فرینک این عملیات پر هزینه را در حالت بدون پیش شرط به محاسبه مولفه های شارهای مرتبط با مقادیر ویژه تقلیل داد. در این تحقیق در حالت پیش شرط، عملیات مشابهی بر روی عبارات لزجت مصنوعی بجای شکل ضربهای ماتریسی انجام و معادلات جدید ارایه شد. در ضمن معادلات در یک شکل عمومی ارایه شده که قابلیت سوئیچ به هر کدام از حالات با پیش شرط یا بدون پیش شرط را دارد. اینگونه ارایه عمومی معادلات علاوه بر کاربردهایی که در روش بهینه‌سازی الحاقی دارد، امکان سریع تبدیل کدهای تراکم پذیر بدون پیش شرط را به حالت با پیش شرط فراهم می نماید. در بخش نتایج، حلگر برای ایرفویلهای آزمونه تک المانی و چند المانی در حالت کم‌سرعت و سرعت‌بالا با نتایج تجربی مقایسه شده است. نتایج نشان می دهد همگرایی باقیمانده ها که در حلگر تراکم پذیر در سرعتهای پایین بسیار طولانی بوده است در حالت پیش شرط به شدت بهبود می‌یابد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

A viscous all-speed solver development based on Roe upwind scheme in unstructured database

نویسندگان English

Mostafa Goharshadi 1
Masoud Mirzaei 2
1 K.N.Toosi University of Technology, Aerospace Faculty, Tehranpars
چکیده English

Abstract In this paper, a viscous all-speed flow solver has been developed based on Roe upwind scheme in unstructured database. In the presented method, stiffness of the compressible governing equations in low-speed region reduces using the preconditioning form. In calculating the artificial viscosity of a Roe upwind scheme, multiple matrices multiplication are needed. Frink reduced these costly operations by simplification of the matrices multiplication to some flux components which are related to distinct eigenvalues. In this research similar to Frink work, the equations of artificial viscosity in preconditioning Roe upwind scheme obtained and presented in the flux components form. This is a generalized form that can be easily switched to the preconditioned or non-preconditioned form. This is useful in converting any original Roe upwind scheme to the preconditioning form and also has application in adjoint optimization method. Results of the computer code were compared with experimental data of single and two-element airfoils in both preconditioning and non-preconditioning form. The results show that the non-preconditioning compressible solver hardly converged in low-speed regions while the preconditioned form converged more rapidly.

کلیدواژه‌ها English

Compressible
Preconditioning
Roe scheme
unstructured grid
[1] A.J. Chorin, A Numerical Method for Solving Incompressible
Viscous Flow Problems. J. Computational Physics, 2, pp. 12-26,
1967.
[2] Y.H Choi, C.L. Merkle, Time-Derivative Preconditioning for
Viscous Flows. AIAA Paper 91-1652, 1991.
[3] E. Turkel, R. Radespiel, N. Kroll, Assessment of Preconditioning
Methods for Multidimensional Aerodynamics. Computers &
Fluids, 26 ,pp. 613-634, 1997.
[4] N. T. FRINK, Upwind scheme for solving the Euler equations on
unstructured tetrahedral meshes, AIAA Journal, Vol. 30, No. 1, pp.
70-77, 1992.
[5] K. Volkov, A.G. Karpenko, Preconditioning of gas dynamics
equations in compressible gas flow computations at low mach
numbers. Computational Mathematics and Mathematical Physics.
55. 1051-1067. 10.1134/S0965542515060135, 2015.
[6] V.G. Asouti, A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou,
Continuous and discrete adjoint approaches for aerodynamic shape
optimization with low Mach number preconditioning, Int. J. Numer.
Methods Fluids 57 1485–1504, 2008.
[7] P.L. Roe, Approximate Riemann solvers, parameter vectors, and
difference schemes. J. Comput. Phys., 43:357–372, 1981.
[8] S. R. Allmaras, F. T Johnson, P. R Spalart, Modifications and
Clarifications for the Implementation of the Spalart-Allmaras
Turbulence Model. ICCFD7-1902, 7th International Conference
on Computational Fluid Dynamics, Big Island, Hawaii, 9-13, 2012.
[9] J. Weiss, W.A. Smith, Preconditioning Applied to Variable and
Constant Density Flows. AIAA Journal, 33, pp. 2050-2057, 1995.
[10] P.H. Cook, M.A. McDonald, M.C.P. Firmin, Aerofoil RAE 2822-
Pressure Distributions and Boundary Layer and Wake
Measurements. AGARD AR 138, A6-1 to A6-77, 1994.
[11] N. Gregory, C.L. O’Reilly, Low Speed Aerodynamic
Characteristics of NACA0012 Airfoil Section, Including the
Effects of Upper Surface Roughness Simulation Hoarfrost.
National Physical Laboratory, NPL Aero Report 1308, 1970.
[12] K. Kitamura, and E. Shima, Simple and Parameter-Free Second
Slope Limiter for Unstructured Grid Aerodynamic Simulations,
AIAA Journal, Vol. 50, No. 6, pp.1415-1426, 2012.