مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی ارتعاشات آزاد محوری نانومیله‌های تابعی مدرج با استفاده از تئوری الاستیسیته سطح

نویسندگان
1 استادیار مهندسی مکانیک/ دانشکده فنی و مهندسی دانشگاه دامغان
2 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران
چکیده
در این مقاله، رفتار ارتعاشات آزاد محوری نانومیله‌های تابعی مدرج با استفاده از تئوری الاستیسیته سطحی مطالعه می‌شود. به منظور مدلسازی ارتعاشات آزاد محوری نانومیله‌ها، از تئوری ساده میله‌ها استفاده شده است. در کنار استفاده از تئوری ساده میله‌ها، از تئوری الاستیسیته سطحی به منظور در نظر گرفتن مولفه‌های انرژی سطح در معادلات حرکت و شرایط مرزی استفاده شده است. مولفه‌های انرژی سطح را مدول الاستیسیته سطحی، چگالی سطحی، و تنش پسماند سطحی تشکیل می‌دهند. خواص مکانیکی حجمی و سطحی نانومیله نیز در راستای طولی بصورت توانی در نظر گرفته شده است. سپس، با استفاده از اصل همیلتون، معادله حرکت و شرایط مرزی نانومیله استخراج شده است. بدلیل در نظر گرفتن مولفه‌های انرژی سطح، معادله حرکت ناهمگن بدست آمده است. اما در هیچ یک از پژوهش‌های قبلی مانند بررسی رفتار ارتعاشات عرضی نانوتیرها و ارتعاشات پیچشی نانومیله‌ها در حضور انرژی سطح، مولفه‌های انرژی سطح سبب ناهمگن شدن معادله حرکت یا شرط مرزی نشده بودند. جهت استخراج فرکانس‌های طبیعی نانومیله، ابتدا با استفاده از تغییر متغیر مناسب، معادله حرکت ناهمگن تبدیل به معادله حرکت همگن شده است و سپس با استفاده از روش گلرکین، معادله حرکت به ازای دو شرط مرزی گیردار-گیردار و گیردار-آزاد حل شده است. به منظور جامع بودن پژوهش، تاثیر پارامترهای مختلف مانند طول و شعاع نانومیله بر فرکانس‌های محوری نانومیله تابعی مدرج مورد بررسی قرار گرفته است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Free axial vibration analysis of functionally graded nanorods using surface elasticity theory

نویسندگان English

Reza Nazemnezhad 1
Hassan Shokrollahi 2
2 Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
چکیده English

In the present paper, free axial vibration behavior of functionally graded nanorods is studied using the surface elasticity theory. For modelling of free axial vibration of nanorods, the Simple theory of rods is implemented. Besides using the Simple theory of rods, the surface elasticity theory is used for considering the surface energy parameters in the governing equations and boundary conditions. The surface energy parameters are the surface elasticity, the surface density, and the surface residual stress. The surface and bulk material properties of nanorod are considered to vary in the length direction according to the power law distribution. Then, the governing equation of motion and boundary conditions of nanorod are derived using the Hamilton’s principle. Due to considering the surface energy parameters, the obtained governing equation of motion becomes non-homogeneous. But in none of the previous researches, for example investigation of free transverse vibration of nanobeams and free torsional vibration of nanorods in presence of the surface energy, the surface energy parameters do not cause the non-homogeneity of the governing equation or the boundary conditions. To extract the natural frequencies of the nanorod, firstly the non-homogeneous governing equation is converted to a homogeneous one using an appropriate change of variable, and then for clamped-clamped and clamped-free boundary conditions the governing equation is solved using Galerkin method. In order to have a comprehensive research, effects of various parameters like the length and radius of nanorod on axial frequencies of functionally graded nanorod is investigated.

کلیدواژه‌ها English

Nanorod
Free axial vibration
Surface elasticity theory
Functionally graded
[1] M. Aydogdu, Axial vibration of the nanorods with the nonlocal continuum rod model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 41, No. 5, pp. 861-864, 2009.
[2] M. Aydogdu, Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity, Mechanics Research Communications, Vol. 43, pp. 34-40, 2012.
[3] S. M. H. Goushegir, S. Faroughi, Analysis of axial vibration of non-uniform nanorods using boundary characteristic orthogonal polynomials, Modares Mechanical Engineering, Vol. 16, No. 1, pp. 203-212, 2016. (In Persian فارسی)
[4] K. Kiani, Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 1, pp. 387-397, 2010.
[5] U. Gul, M. Aydogdu, G. Gaygusuzoglu, Axial dynamics of a nanorod embedded in an elastic medium using doublet mechanics, Composite Structures, Vol. 160, pp. 1268-1278, 2017.
[6] I. Ecsedi, A. Baksa, Free axial vibration of nanorods with elastic medium interaction based on nonlocal elasticity and Rayleigh model, Mechanics Research Communications, Vol. 86, pp. 1-4, 2017.
[7] J.-C. Hsu, H.-L. Lee, W.-J. Chang, Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory, Current Applied Physics, Vol. 11, No. 6, pp. 1384-1388, 2011.
[8] T. Murmu, S. Adhikari, Nonlocal effects in the longitudinal vibration of double-nanorod systems, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 1, pp. 415-422, 2010.
[9] D. Karličić, M. Cajić, T. Murmu, S. Adhikari, Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems, European Journal of Mechanics-A/Solids, Vol. 49, pp. 183-196, 2015.
[10] R. Nazemnezhad, K. Kamali, Investigation of the inertia of the lateral motions effect on free axial vibration of nanorods using nonlocal Rayleigh theory, Modares Mechanical Engineering, Vol. 16, No. 5, pp. 19-28, 2016. (In Persian فارسی)
[11] B. Akgöz, Ö. Civalek, Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM), Composites Part B: Engineering, Vol. 55, pp. 263-268, 2013.
[12] M. Şimşek, Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods, Computational Materials Science, Vol. 61, pp. 257-265, 2012.
[13] R. Fernandes, S. El-Borgi, S. Mousavi, J. Reddy, A. Mechmoum, Nonlinear size-dependent longitudinal vibration of carbon nanotubes embedded in an elastic medium, Physica E: Low-dimensional Systems and Nanostructures, Vol. 88, pp. 18-25, 2017.
[14] S. S. Rao, Vibration of continuous systems: John Wiley & Sons, 2007.
[15] M. E. Gurtin, A. I. Murdoch, A continuum theory of elastic material surfaces, Archive for rational mechanics and analysis, Vol. 57, No. 4, pp. 291-323, 1975.