[1] L. J. Currano, M. Yu, B. Balachandran, Latching in a MEMS shock sensor: Modeling and experiments, Sensors and Actuators A: Physical, Vol. 159, No. 1, pp. 41-50, 2010.
[2] S. Chaterjee, G. Pohit, A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams, Journal of sound and vibration, Vol. 322, No. 4, pp. 969-986, 2009.
[3] M. H. Mahdavi, A. Farshidianfar, M. Tahani, S. Mahdavi, H. Dalir, A more comprehensive modeling of atomic force microscope cantilever, Ultramicroscopy, Vol. 109, No. 1, pp. 54-60, 2008.
[4] M. A. Mohammadi, K. A. Yousefi, M. E. Maani, M. Karipour, Dynamics behavior analysis of atomic force microscope based on gradient theory, Modares Mechanical Engineering, Vol. 16, No. 9, pp. 155-164, 2016. (in Persian فارسی )
[5] M. Abbasi, Nonlinear vibration analysis of a dynamic atomic force microscope microcantilever in the tapping mode based on the modified couple stress theory, Modares Mechanical Engineering, Vol. 14, No. 11, pp. 9-17, 2015. (in Persian فارسی )
[6] E. M. Abdel-Rahman, M. I. Younis, A. H. Nayfeh, Characterization of the mechanical behavior of an electrically actuated microbeam, Journal of Micromechanics and Microengineering, Vol. 12, No. 6, pp. 759, 2002.
[7] Y. Ahn, H. Guckel, J. D. Zook, Capacitive microbeam resonator design, Journal of Micromechanics and Microengineering, Vol. 11, No. 1, pp. 70, 2001.
[8] L. D. Gabbay, J. E. Mehner, S. D. Senturia, Computer-aided generation of nonlinear reduced-order dynamic macromodels. I. Non-stress-stiffened case, Journal of Microelectromechanical Systems, Vol. 9, No. 2, pp. 262-269, 2000.
[9] A. H. Nayfeh, M. I. Younis, E. M. Abdel-Rahman, Dynamic pull-in phenomenon in MEMS resonators, Nonlinear dynamics, Vol. 48, No. 1-2, pp. 153-163, 2007.
[10] S. Govindjee, J. L. Sackman, On the use of continuum mechanics to estimate the properties of nanotubes, Solid State Communications, Vol. 110, No. 4, pp. 227-230, 1999.
[11] Q. Ma, D. R. Clarke, Size dependent hardness of silver single crystals, Journal of Materials Research, Vol. 10, No. 4, pp. 853-863, 1995.
[12] J. Stölken, A. Evans, A microbend test method for measuring the plasticity length scale, Acta Materialia, Vol. 46, No. 14, pp. 5109-5115, 1998.
[13] A. C. Chong, D. C. Lam, Strain gradient plasticity effect in indentation hardness of polymers, Journal of Materials Research, Vol. 14, No. 10, pp. 4103-4110, 1999.
[14] E. Cosserat, F. Cosserat, Deformable Bodies, Scientific Library A. Hermann and Sons, 1909.
[15] R. D. Mindlin, Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis, Vol. 16, No. 1, pp. 51-78, 1964.
[16] R. Mindlin, H. Tiersten, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and analysis, Vol. 11, No. 1, pp. 415-448, 1962.
[17] R. D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, International Journal of Solids and Structures, Vol. 1, No. 4, pp. 417-438, 1965.
[18] R. Mindlin, N. Eshel, On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures, Vol. 4, No. 1, pp. 109-124, 1968.
[19] W. KOlTER, Couple stresses in the theory of elasticity, Proc. Koninklijke Nederl. Akaad. van Wetensch, Vol. 67, 1964.
[20] F. Yang, A. Chong, D. C. C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, Vol. 39, No. 10, pp. 2731-2743, 2002.
[21] A. R. Hadjesfandiari, G. F. Dargush, Couple stress theory for solids, International Journal of Solids and Structures, Vol. 48, No. 18, pp. 2496-2510, 2011.
[22] S. Park, X. Gao, Bernoulli–Euler beam model based on a modified couple stress theory, Journal of Micromechanics and Microengineering, Vol. 16, No. 11, pp. 2355, 2006.
[23] S. Kong, S. Zhou, Z. Nie, K. Wang, The size-dependent natural frequency of Bernoulli–Euler micro-beams, International Journal of Engineering Science, Vol. 46, No. 5, pp. 427-437, 2008.
[24] W. Xia, L. Wang, L. Yin, Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration, International Journal of Engineering Science, Vol. 48, No. 12, pp. 2044-2053, 2010.
[25] M. H. Kahrobaiyan, M. Asghari, M. Hoore, M. T. Ahmadian, Nonlinear size-dependent forced vibrational behavior of microbeams based on a non-classical continuum theory, Journal of Vibration and Control, Vol. 18, No. 5, pp. 696-711, 2012.
[26] D. C. Lam, F. Yang, A. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, Vol. 51, No. 8, pp. 1477-1508, 2003.
[27] S. Kong, S. Zhou, Z. Nie, K. Wang, Static and dynamic analysis of micro beams based on strain gradient elasticity theory, International Journal of Engineering Science, Vol. 47, No. 4, pp. 487-498, 2009.
[28] B. Wang, J. Zhao, S. Zhou, A micro scale Timoshenko beam model based on strain gradient elasticity theory, European Journal of Mechanics-A/Solids, Vol. 29, No. 4, pp. 591-599, 2010.
[29] M. Kahrobaiyan, M. Asghari, M. Rahaeifard, M. Ahmadian, A nonlinear strain gradient beam formulation, International Journal of Engineering Science, Vol. 49, No. 11, pp. 1256-1267, 2011.
[30] L. N. Trefethen, Spectral methods in MATLAB: SIAM, 2000.
[31] R. Ansari, V. Mohammadi, M. F. Shojaei, R. Gholami, S. Sahmani, On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory, Composites Part B: Engineering, Vol. 60, pp. 158-166, 2014.
[32] R. Bellman, B. Kashef, J. Casti, Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, Journal of computational physics, Vol. 10, No. 1, pp. 40-52, 1972.
[33] X. Wang, C. Bert, A. Striz, Differential quadrature analysis of deflection, buckling, and free vibration of beams and rectangular plates, Computers & structures, Vol. 48, No. 3, pp. 473-479, 1993.