مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی بهینه چندهدفه کانتور کامل نازل ماوراء صوت یک تونل شوک

نویسندگان
1 دانشجوی دکترا / پژوهشگاه هوافضا
2 عضو هیات علمی / پژوهشگاه هوافضا
چکیده
در این مقاله با یک رویکرد سیستمی-سیالاتی به طراحی بهینه نازل ماوراء صوت برای استفاده در یک تونل شوک پرداخته شده است. پس از تعیین الزامات و مراحل طراحی مفهومی و طراحی اولیه با استفاده از یک روش مدرن از الگوریتم ژنتیک و دینامیک سیالات محاسباتی جهت بهینه‌سازی کانتور نازل ماوراء صوت بهره گرفته شده است. در روش بهینه‌سازی که در این مقاله در پیش گرفته شده است کل منحنی نازل به صورت یکپارچه با تعدادی نقطه کنترلی به صورت پارامتریک بیان می‌شود و تحت استراتژی بهینه‌سازی ژنتیک تا رسیدن به منحنی بهینه نهایی با حلگر لزج ناویر استوکس و یک مدل آشفتگی دو معادله‌ای مورد ارزیابی قرار می‌گیرد. در این رویکرد از آنجایی که ارزیابی توابع هدف با شبیه‌سازی عددی انجام می‌شود برای کاهش زمان فرایند بهینه‌سازی، هم در روش عددی و هم در الگوریتم ژنتیک، از پردازش موازی استفاده شده است. همچنین در این فرایند، از اسکالرسازی سه تابع هدف یعنی کمترین افت فشار کل، یکنواختی عدد ماخ و کمترین انحراف جریان محوری در خروجی نازل بهره گرفته شده است. در نهایت کانتور نازل بهینه، بهبود عملکرد قابل توجهی نسبت به نازل اولیه حاصل می‌کند و کارامدی این روش را به خوبی نشان می‌دهد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Multiobjective Design Optimization of a Mach 6 Hypersonic Nozzle of a Shock Tunnel

نویسندگان English

Shahed Malekipour 1
Mohammad Ebrahimi 2
1 PhD Candidate / Aerospace Research Institute
2 Faculty Member/Aerospace Research Institute
چکیده English

In this paper, a systematic approach is considered to Design an optimal hypersonic Nozzle of a shock tunnel. After assigning the requirements and accomplishment of conceptual and preliminary design phases, a modern optimization strategy based on genetic algorithm and a CFD solver has been used to fine tune the nozzle convergent divergent contour. In this way, parameterization of the overall nozzle contour was done with a few control points and a Bezier curve. This arrangement showed a good flexibility to generate appropriate curves for nozzle shape. Design objectives were evaluated with a N-S viscous solver with a two equation turbulence model. Three objective functions were scalerized in a term with summation of weighted parameters: minimum total pressure loss, Mach number uniform distribution along test section and minimum axial flow deviation. A number of geometrical and physical constraints such as nozzle length, throat area, inlet and outlet diameters and inlet boundary conditions were also considered and finally, an optimized nozzle contour showed a significant improvement of about 3% in quality of the Mach 6 flow in the test section.

کلیدواژه‌ها English

Design Optimization
Shock Tunnel
Hypersonic Nozzle
Nozzle starting time
[1] I. E. Beckwith, H. W. Ridyard, and N. Cromer, The aerodynamic design of high Mach number nozzles utilizing axisymmetric flow with application to a nozzle of square test section, National Advisory Committee for Aeronautics, 1952.
[2] J. C. Sivells, Aerodynamic design of axisymmetric hypersonic wind-tunnel nozzles, Journal of Spacecraft and Rockets, Vol. 7, No. 11, pp. 1292-1299, 1970.
[3] I. Beckwith, M. Malik, and F-J. Chen, Nozzle optimization study for quiet supersonic wind tunnels, 17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference, 1984.
[4] J. R. Benton, and J. Perkins, Limitations of the methods of characteristics when applied to axisymmetric hypersonic nozzle design, Rep./AIAA; 90-0192, 1990.
[5] J. J. Korte, Aerodynamic design of axisymmetric hypersonic wind-tunnel nozzles using a least-squares/parabolized Navier-Stokes procedure, Journal of Spacecraft and Rockets, Vol. 29, No. 5, pp. 685-691, 1992.
[6] K. M. Chadwick, M. S. Holden, J. J. Korte, and E. C. Anderson, Design and fabrication of a Mach 8 contoured nozzle for the LENS facility, 34th AIAA Aerospace Sciences Meeting, AIAA Paper 1996-0585, 1996.
[7] R. Tolle, A new optimum design code for hypersonic nozzles- utilizing response surface methodology, in AIAA, 1997.
[8] C. S. Craddock, Computational optimization of scramjets and shock tunnel nozzles, PhD Thesis, The University of Queensland, Brisbane, Australia, 1999.
[9] G. V. R. Rao, J. E. Beck, and T. E. Booth, Nozzle optimization for space-based vehicles, AIAA paper A99- 31323, 1999.
[10] R. S. M. Chue, R. J. Bakos, C.-Y. Tsai and A. Betti, Design of a shock-free expansion tunnel nozzle in HYPULSE, Shock Waves, Vol. 13, No. 4, pp. 261-270, 2003.
[11] S. M. Aulchenko, V. M. Galkin, V. I. Zveginzev, and A. N. Shiplyk, Design of a multimode axisymmetric nozzle for a hypersonic wind tunnel by methods of numerical optimization." 14 Int. Conf. on Methods of Aerophysical Research. 30 June–6 July 2008, Abstracts, Pt. 2, Novosibirsk, pp. 221–222, 2008.
[12] H. Naiman, Analysis and design of quiet hypersonic wind tunnels, PhD Thesis, New Brunswick: Graduate School, The State University of New Jersey, USA, 2010.
[13] J. Gong, D. Yao and X. Liu, Aerodynamic Optimization of the Expansion Section in a Hypersonic Quiet Nozzle Based on Favorable Pressure Effect, Journal of Applied Mathematics and Physics, Vol. 2, No. 6, p. 443, 2014.
[14] 2016 Year in Review, Aerospace America, December Issue, AIAA, Accessed on 09 December 2017; http://archive.aerospaceamerica.org.
[15] O. Herbert, The Aachen Shock Tunnel TH2 with Dual Driver Mode Operation, Experimental Methods of Shock Wave Research, Springer International Publishing, Vol. 9 pp. 111-129, 2016.
[16] S. P. Schneider, Development of Hypersonic Quiet Tunnels, Journal of Spacecraft and Rockets, Vol. 45, No. 4, pp. 641–664, 2008.
[17] M. V. Morkovin, On supersonic wind tunnels with low free-stream disturbances, Journal of Applied Mechanics, Vol. 26, No. 3, pp. 319-323, 1959.
[18] J. Huang, L. Duan, and M. M. Choudhari, Direct Numerical Simulation of Acoustic Noise Generation from the Nozzle Wall of a Hypersonic Wind Tunnel, 47th AIAA Fluid Dynamics Conference, 2017.
[19] C. E. Smith, The Starting Process in a Hypersonic Nozzle, Journal of Fluid Mechanics, Vol. 24, No.04, pp. 625-640,1966.
[20] A. Pope and K. L. Goin, High-Speed Wind Tunnel Testing, Wiley, 1965.
[21] D.W. Holder, and D.L. Schultz, On the Flow in a Reflected-Shock Tunnel, Aeronautical Research Council Reports and Memoranda No. 3265, 1962.
[22] F.K. Lu, Initial Operation of the UTA Shock Tunnel, Paper 92-0331, AIAA 30th Aerospace Sciences Meeting & Exhibit, Reno, Nevada, 1992.
[23] Y.N. Yu, A Summary of Design Techniques for Axisymmetric Hypersonic Wind Tunnels, Report No.: AGARDograph-35, Paris: Advisory Group for Aeronautical Research and Development, 1958.
[24] R. Li, J. Shen, and J. Feng, Aerodynamic Design of the Bleed Slot in a Hypersonic Quiet Nozzle, Journal of Applied Mathematics and Physics, Vol. 2, No. 06, pp. 437-442, 2014.