مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی رویتگر غیرخطی اغتشاش و کنترل کننده پسگام مرتبه کسری بر پایه روش LQR برای ربات پوشیدنی بازتوانی

نویسندگان
1 دانشجوی دکتری، مهندسی برق، دانشگاه اصفهان، اصفهان
2 استادیار، مهندسی برق، دانشگاه اصفهان، اصفهان
چکیده
تاکنون نمونه های مختلفی از رباتهای پوشیدنی با کاربرد بازتوانی طراحی و ساخته شده اند . یکی از چالش برانگیزترین بخش های طراحی رباتهای اسکلت خارجی، طراحی سیستم کنترل حرکت آن است. در رباتهای پوشیدنی بشه دلیشغ ریرخطشی بشودن مشدل دینامیکی، عدم قطعیت پارامترها، ساختارهای مدل نشده یا ساده شده و ارتشاش خارجی (ناشی از نیروی اعمال شده توسط کاربر) استفاده از روشهای کنترلی مقاوم ضروری است. بنابراین در این پژوهش جهت تخمین کلیه عوامل ناخواسته به صورت یک اغتشاش کلی از رویتگر غیر خطی اغتشاش استفاده شد و کنترل کننده مقاوم مورد استفاده LQR-FOBSC از ترکیب دو کنترل کننده LQR و پسگام مرتبه کسری طراحی شد. مزیت کنترل کننده LQR ، انتخاب ورودی کنترلی برای رسیدن سریع و بهینه به نقطه تعادل است و FOBSC مقاوم بودن کنترل کننده در برابر عدم قطعیت و اغتشاش و کاهش چترینگ را تضمین می کند. همچنین جهت انتخاب مناسب ضرایب تابع هدف کنترل کننده LQR از الگوریتم ازدحام ذرات استفاده شد. به منظور ارزیابی روش کنترلی ارایه شده، بین نرم افزارهای بیومکانیکی اپن سیم برای شبیه سازی بدن انسان و ربات و محاسباتی متلب به صورت بر خط ارتباط برقرار شد. با استفاده از متلب در هر لحظه ورودی کنترلی محاسبه و به ربات اعمال و اثر آن روی ماهیچه ها و استخوان های بدن کاربر با استفاده از نرم افزار اپن سیم مشاهده و موقعیت مفصل زانو محاسبه گردید. روش حاضر با روش های پسگام مود لغزشی، مرتبه کسری و LQR مقایسه و برتری آن نشان داده شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Designing a nonlinear disturbance observer and LQR based fractional order backstepping controller for a wearable rehabilitation robot

نویسندگان English

M. Khamar 1
M. Edrisi 2
1 Department of Electrical Engineering, University of Isfahan, Isfahan, Iran
2 Department of Electrical Engineering, University of Isfahan, Isfahan, Iran
چکیده English

Recently, a vast variety of wearable robots with various applications, including rehabilitation, have been produced, but a very challenging part of exoskeleton designing which is its motion control system still requires further investigation to be completed. Due to the nonlinearity in the dynamics of human-exoskeleton, uncertainty in parameters, unmodeled or simplified structures, and external disturbances (such as interaction of exerted human forces and movements), the use of robust control strategies is inevitable. Thus, in this research, a nonlinear disturbance rejection observer was used to estimate all of those as total disturbances. Then, a fractional order backstepping sliding mode (FOBSC) was utilized for enhanced tracking plus a Linear Quadratic Regulator (LQR) method to optimize the convergence to the equilibrium points. The advantage of using LQR is the optimum selection of the control input, and the FOBSC guarantees the robustness of the controller against uncertainties and disturbances. The combination of fractional order theory and control methods causes less chattering in the human-exoskeleton interactions. Moreover, particle swarm algorithm was used in order to select the coefficients of the cost function of LQR. In order to calculate the effect of the exoskeleton on human muscles and bones, the human parameters and knee motions, OpenSim was used. Matlab was used to implement the control strategy through OpenSim. The proposed method was then compared with the normal backstepping, fractional order system and LQR methods. The results show the superiority of this method compared to the classical methods.

کلیدواژه‌ها English

Knee wearable robot
Fractional order backstepping control
Linear quadratic regulator
Nonlinear disturbance observer
[1] D. A. Winter, Biomechanics and Motor Control of Human Movement: Wiley, 1990.
[2] B. Chen, H. Ma, L. Y. Qin, F. Gao, K. M. Chan, S. W. Law, L. Qin, W. H. Liao, Recent developments and challenges of lower extremity exoskeletons, Journal of Orthopaedic Translation, Vol. 5, pp. 26-37, 2016.
[3] J. Bae, K. Kong, Gait phase-based control for a knee assistive system, in 2012 12th International Conference on Control, Automation and Systems, pp. 1021-1024, 2012.
[4]S. Mefoued, A robust adaptive neural control scheme to drive an actuated orthosis for assistance of knee movements, Neurocomputing, Vol. 140, pp. 27-40, 2014.
[5] Z. Chen, Z. Li, C. L. P. Chen, Disturbance Observer-Based Fuzzy Control of Uncertain MIMO Mechanical Systems With Input Nonlinearities and its Application to Robotic Exoskeleton, IEEE Transactions on Cybernetics, Vol. 47, No. 4, pp. 984-994, 2017.
[6] F. Cao, C. Li, Y. Li, Robust sliding mode adaptive control for lower extremity exoskeleton, in Chinese Automation Congress (CAC), pp. 400-405, 2015.
[7] Q. Guo, S. Li, D. Jiang, A Lower Extremity Exoskeleton: Human-Machine Coupled Modeling, Robust Control Design, Simulation, and Overload-Carrying Experiment, Mathematical Problems in Engineering Vol. 2015.
[8] M. Rahmani, A. Ghanbari, M. M. Ettefagh, Robust adaptive control of a bio-inspired robot manipulator using bat algorithm, Expert Systems with Applications, Vol. 56, pp. 164-176, 2016 .
[9] S. Mefoued, S. Mohammed, Y. Amirat, Toward Movement Restoration of Knee Joint Using Robust Control of Powered Orthosis, IEEE Transactions on Control Systems Technology, Vol. 21, No. 6, pp. 2156-2168, 2013 .
[10 j A. Ferrara, G. P. Incremona, Design of an Integral Suboptimal Second-Order Sliding Mode Controller for the Robust Motion Control of Robot Manipulators, IEEE Transactions on Control Systems Technology, Vol. 23, No. 6, pp. 2316-2325, 2015 .
[11] S. Mefoued, A second order sliding mode control and a neural network to drive a knee joint actuated orthosis, Neurocomputing, Vol. 155, pp. 71-79, 2015 .
[12]S. Mohammed, W. Huo, J. Huang, H. Rife, Y. Amirat, Nonlinear disturbance observer based sliding mode control of a human-driven knee joint orthosis, Robotics and Autonomous Systems, Vol .75 ,pp. 41-49, 2016 .
[13]A. Mohammadi, H. J. Marquez, M. Tavakoli, Nonlinear Disturbance Observers: Design and Applications to Euler-Lagrange Systems, IEEE Control Systems, Vol. 37, No. 4, pp. 50-72, 2017 .
[14] J. J. E. Slotine, W. Li, Applied Nonlinear Control: Prentice Hall, 1991 .
[15] X. Xiong, Z. Wan, The simulation of double inverted pendulum control based on particle swarm optimization LQR algorithm, in IEEE International Conference on Software Engineering and Service Sciences ,pp. 253-256, 2010.
[16]Eberhart, S. Yuhui, Particle swarm optimization: developments, applications and resources, in Proceedings of the Congress on Evolutionary Computation (IEEE Cat. No.01T118546), pp. 81-86, 2001.
[17] E. Vinodh Kumar, J. Jerome, Robust LQR Controller Design for Stabilizing and Trajectory Tracking of Inverted Pendulum, Procedia Engineering Vol. 64, pp. 169-178, 2013 .
[18]M. Rahmani, H. Komijani, A. Ghanbari, M. M. Ettefagh, Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective bat algorithm, Microsystem Technologies, Vol. 24, No. 6, pp. 2835-2846, 2018/06/01, 2018 .
[19]H. Delavari, H. Heydarinejad, Adaptive fractional order Backstepping sliding mode controller design for a magnetic levitation system, Modares Mechanical Engineering Vol. 17, No. 3, pp. 187-195, 2017 .(in
[20]D. Zhang, L. Cao, S. Tang, Fractional-order sliding mode control for a class of uncertain nonlinear systems based on LQR, International Journal of Advanced Robotic Systems, Vol. 14, No. 2, pp. 172988141769429, 2017 .
[21]D. Zhang, L. Cao, S. Tang, Fractional-order sliding mode control for a class of uncertain nonlinear systems based on LQR, International Journal of Advanced Robotic Systems, Vol. 14, No .2 ,pp. 720-735, 2017 .
[22]M. Mansouri, J. A. Reinbolt, A platform for dynamic simulation and control of movement based on OpenSim and MATLAB, Journal of biomechanics, Vol. 45, No. 8, pp. 1517-1521, 2012 .
[23] M. Mansouri, J. Reinbolt, A platform for dynamic simulation and control of movement based on OpenSim and MATLAB., Journal of biomechanics, Vol. 45, No. 8, pp. 1517-21, 2012 .