مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل اثر سطح و میدان مغناطیسی بر پاسخ فرکانسی رزونانس اولیه و سوپرهارمونیک نانولوله کربنی تک‌لایه

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه مهندسی مکانیک، واحد رامسر، دانشگاه آزاد اسلامی، رامسر، ایران
2 گروه مهندسی مکانیک، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
چکیده
در این مقاله براساس مدل غیرخطی و غیرموضعی تیر اویلر برنولی به تحلیل اثر الاستیسیته سطح و میدان مغناطیسی بر پاسخ فرکانسی رزونانس اولیه و سوپرهارمونیک نانولوله کربنی تک‌لایه روی بستر ویسکوالاستیک تحت اعمال بارهای محوری مغناطیسی و دمایی و بار عرضی هارمونیک پرداخته شد. معادلات دیفرانسیل جزیی حاکم بر رفتار سیستم با استفاده از روش گالرکین به‌همراه تابع شکل مثلثاتی به معادله دیفرانسیل معمولی تقلیل یافته و با به‌کارگیری روش مقیاس زمانی چندگانه روابطی تحلیلی برای پاسخ فرکانسی نانولوله کربنی در دو حالت رزونانس اولیه و سوپرهارمونیک استخراج شده است. اثرات الاستیسیته سطح، تغییرات دما، میدان مغناطیسی و نسبت طول به قطر خارجی نانولوله کربنی بر پاسخ فرکانسی رزونانس اولیه و سوپرهارمونیک مورد تحلیل قرار گرفت. نتایج حاصل از تحلیل منحنی‌های پاسخ فرکانسی نشان می‌دهد که درنظرگرفتن اثر غیرخطی با توجه به مقادیر پارامترهای هندسی و مکانیکی مورد بررسی در این مقاله موجب بروز پدیده نامطلوب پرش به‌همراه ناحیه ناپایدار می‌شود. علاوه بر این الاستیسیته سطح، میدان مغناطیسی، کاهش تغییرات دما و افزایش نسبت طول به قطر خارجی اثری مثبت در کاهش شدت پدیده پرش و افزایش سطح پایداری سیستم دارند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Surface and Magnetic Field Effects Analysis on the Primary and Superharmonic Resonance Frequency Response of Single Walled CNT

نویسندگان English

H. Ramezannejad Azarboni 1
H. Keshavarzpour 2
1 Department of Mechanical Engineering, Ramsar branch, Islamic Azad University, Ramsar, Iran.
2 Mechanical Engineering Department, Rasht Branch, Islamic Azad University, Rasht, Iran
چکیده English

In this study, based on the nonlocal nonlinear Euler-Bernoulli beam model, the primary and superharmonic resonance of a single carbon nanotube (CNT) resting on a viscoelastic foundation under the magnetic axial loads and temperature as well as transverse harmonic forces was investigated. Using Galerkin approximation along with the trigonometric shape functions, the nonlinear partial differential governing equation is reduced to nonlinear ordinary differential equation. The frequency response of the single walled CNT is derived by implementing the multiple time scale method for the primary and superharmonic resonances. The effects of surface elasticity, change in temperature, magnetic field and the length-to-outer diameter aspect ratio on the frequency response of CNT in the cases of primary and superharmonic resonances were analyzed. The results show that the nonlinearity according to considered geometrical and mechanical parameters in this study, may cause unpleasant jumping phenomenon accompanied by unstable region in the frequency response. In addition to the surface elasticity, magnetic field, smaller temperature changes, as well as larger aspect ratio have positive effects on weakening the jumping phenomenon and extending the stability level of single walled CNT.

کلیدواژه‌ها English

Single walled carbon nanotube
Surface elasticity
Magnetic Field
Frequency Response
Jumping phenomenon
1- De Volder MF, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: Present and future commercial applications. Science. 2013;339(6119):535-539. [Link] [DOI:10.1126/science.1222453]
Alimohammadi F, Parvinzadeh Gashti M, Shamei A. A novel method for coating of carbon nanotube on cellulose fiber using 1,2,3,4-butanetetracarboxylic acid as a cross-linking agent. Progress in Organic Coatings. 2012;74(3):470-478. [Link] [DOI:10.1016/j.porgcoat.2012.01.012]
Prakash P, Mohana Sundaram K, Anto Bennet M. A review on carbon nanotube field effect transistors (CNTFETs) for ultra-low power applications. Renewable and Sustainable Energy Reviews. 2018;89:194-203. [Link] [DOI:10.1016/j.rser.2018.03.021]
Wang Y, Kempa K. Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes. Applied Physics Letters. 2004;85(13):2607. [Link] [DOI:10.1063/1.1797559]
Yukui L, Changchun Z, Xinghui L. Field emission display with carbon nanotubes cathode: Prepared by a screen-printing process. Diamond and Related Materials. 2002;11(11):1845-1847. [Link] [DOI:10.1016/S0925-9635(02)00171-1]
Alemansour H, Maani Miandoab E, Nejat Pishkenari H. Effect of size on the chaotic behavior of nano resonators. Communications in Nonlinear Science and Numerical Simulation. 2017;44:495-505. [Link] [DOI:10.1016/j.cnsns.2016.09.010]
Hu W, Deng Z, Wang B, Ouyang H. Chaos in an embedded single-walled carbon nanotube. Nonlinear Dynamics. 2013;72(1-2):389-398. [Link] [DOI:10.1007/s11071-012-0722-6]
Tajaddodianfar F, Hairi Yazdi MR, Nejat Pishkenari H. On the chaotic vibrations of electrostatically actuated arch micro/nano resonators: A parametric study. International Journal of Bifurcation and Chaos. 2015;25(8):1550106. [Link] [DOI:10.1142/S0218127415501060]
Askari H, Esmailzadeh E. Forced vibration of fluid conveying carbon nanotubes considering thermal effect and nonlinear foundations. Composites Part B Engineering. 2017;113:31-43. [Link] [DOI:10.1016/j.compositesb.2016.12.046]
El-Borgi S, Fernandes R, Reddy JN. Non-local free and forced vibrations of graded nanobeams resting on a non-linear elastic foundation. International Journal of Non-Linear Mechanics. 2015;77:348-363. [Link] [DOI:10.1016/j.ijnonlinmec.2015.09.013]
Murmu T, Mc Carthy MA, Adhikari S. Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: A nonlocal elasticity approach. Journal of Sound and Vibration. 2012;331(23):5069-5086. [Link] [DOI:10.1016/j.jsv.2012.06.005]
Wang YZ, Li FM. Nonlinear primary resonance of nano beam with axial initial load by nonlocal continuum theory. International Journal of Non-Linear Mechanics. 2014;61:74-79. [Link] [DOI:10.1016/j.ijnonlinmec.2014.01.008]
Mayoof FN, Hawwa MA. Chaotic behavior of a curved carbon nanotube under harmonic excitation. Chaos Solitons & Fractals. 2009;42(3):1860-1867. [Link] [DOI:10.1016/j.chaos.2009.03.104]
Ghorbanpour Arani A, Rabbani H, Amir S, Khoddami Maraghi Z, Mohammadimehr M, Haghparast E. Analysis of nonlinear vibrations for multi-walled carbon nanotubes embedded in an elastic medium. Journal of Solid Mechanics. 2011;3(3):258-270. [Link]
Sari MS. Superharmonic resonance analysis of nonlocal nano beam subjected to axial thermal and magnetic forces and resting on a nonlinear elastic foundation. Microsystem Technologies. 2017;23(8):3319-3330. [Link] [DOI:10.1007/s00542-016-3161-3]
Wang GF, Feng XQ. Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Applied Physics Letters. 2007;90(23):231904. [Link] [DOI:10.1063/1.2746950]
Abbasion S, Rafsanjani A, Avazmohammadi R, Farshidianfar A. Free vibration of microscaled Timoshenko beams. Applied Physics Letters. 2009;95(14):143122. [Link] [DOI:10.1063/1.3246143]
Dai HL, Zhao DM, Zou JJ, Wang L. Surface effect on the nonlinear forced vibration of cantilevered nanobeams. Physica E Low-dimensional Systems and Nanostructures. 2016;80:25-30. [Link] [DOI:10.1016/j.physe.2016.01.008]
Wang L. Vibration analysis of fluid-conveying nanotubes with consideration of surface effects. Physica E Low-dimensional Systems and Nanostructures. 2010;43(1):437-439. [Link] [DOI:10.1016/j.physe.2010.08.026]
Chen X, Fang CQ, Wang X. The influence of surface effect on vibration behaviors of carbon nanotubes under initial stress. Physica E Low-dimensional Systems and Nanostructures. 2017;85:47-55. [Link] [DOI:10.1016/j.physe.2016.08.011]
Ghazi R, Payganeh GH, Shahgholi M. Resonance analysis and free nonlinear vibrations of a nanocomposite with internal damping. Modares Mechanical Engineering. 2017;17(12):98-104. [Persian] [Link]
Vosooghi Baneh Sh, Shooshtari AA. Analysis of nonlinear forced vibration of single walled carbon nanotubes in elastic foundation. 3rd International Conference on Acoustics and Vibration, Tehran, Iran, December 25-26, 2013. Tehran: Iranian Society of Acoustics and Vibration; 2013. [Persian] [Link]
Ramezannejad Azarboni H, Keshavarzpour H, Rahimzadeh M. Nonlocal analysis of chaotic vibration, primary and super-harmonic resonance of single walled carbon nanotube in thermal environment. Amirkabir Journal of Mechanical Engineering. 2018 May. [Persian] [Link]