مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

شبیه‌سازی عددی سقوط و قرارگیری قطره بر روی سطح با استفاه از مدل چندفازی روش شبکه بلتزمن

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه مهندسی مکانیک، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
چکیده
روش شان– چن رایج‌ترین مدل روش شبکه بولتزمن برای شبیه‌سازی جریان‌های چندفازی است. اما معمولاً در بررسی جریان‌های چندفازی اثرات دما یا در نظر گرفته نمی‌شود یا اثرات ناچیز فرض می‌شود. ابتدا معادلات شبکه بولتزمن چندفازی هم‌دما (روش شان- چن) و معادلات روش شبکه بولتزمن تک‌فازی گرمایی مدل اسکالر خنثی بیان شدند. در مطالعه حاضر از ترکیب مدل گرمایی اسکالر خنثی و مدل دوفازی شان- چن، روش شبکه بولتزمن جریان‌های دو فازی گرمایی مورد بررسی قرار گرفت. ترکیب این دو مدل از طریق تعریف یک عبارت نیرویی انجام می‌گیرد. به‌علت ماهیت خارجی این ترکیب، مدل ترکیبی پایداری شبیه به مدل چندفازی هم‌دما دارد. بدین منظور در ابتدا مدل گرمایی اسکالر خنثی و سپس مدل شان- چن در حالت همدما بیان می‌شود. همچنین سقوط قطره روی دیواره گرم در قطرهای مختلف بررسی می‌شود و قرارگیری قطره روی دیواره گرم در اعداد رایلی و رینولدز مختلف و همچنین قطرهای مختلف قطره مورد بررسی قرار می‌گیرد. نتایج نشان‌ می‌دهد وجود دما در مسایل چندفازی به عنوان یک مانع رسیدن به حالت پایدار را به تاخیر می‌اندازد و سرعت جعلی به‌وجودآمده در سطح مشترک در میدان دما نیز تاثیر می‌گذارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical Simulation of Droplet Falling and Positioning on Surface Using Multiphase Lattice Boltzmann Model

نویسندگان English

A.H. Bolandi Kashani
M.H. Nobakhti
M. Khayat
Mechanical Engineering Department, Science & Research Branch, Islamic Azad University, Tehran, Iran
چکیده English

Shan-Chen model is the most common model for simulation of multiphase flows using lattice Boltzmann method. The entire multiphase Lattice Boltzman models are limited to regimes, where the temperature dynamics are either negligible or their effects on the flow are unimportant. The entire multiphase LBE models are limited to regimes where the temperature dynamics are either negligible or their effects on the flow are unimportant. The multiphase isothermal lattice Boltzmann equation (LBE) model and single phase thermal LBE (TLBE) model were described. In this research, by combining these two models, the thermal two-phase LBE model was proposed. The coupling of the two models is through a suitably defined body force term. Due to the external nature of this coupling, the new model will have the same stability as the isothermal two-phase model. For this purpose, the scalar thermal model was initially neutral and, then, the Shan-Chen model was expressed in homogeneous state. Also, droplet falling on a heated solid surface and positioning droplet on heated solid surface in different Rayleigh and Reynolds number and different diameter size of droplet were considered. Results show that the temperature in the multiphase flow, as a barrier, delays achieving a stable state, and the fake speed created at the interface area in the temperature field also affects.

کلیدواژه‌ها English

Lattice-Boltzmann Method
Shan-Chen model
Thermal Multiphase flow
Droplet on heated solid surface
1- He X, Chen S, Doolen GD. A novel thermal model for the lattice Boltzmann method in incompressible limit. Journal of Computational Physics. 1998;146(1):282-300. [Link] [DOI:10.1006/jcph.1998.6057]
Dewar M, Sellami N, Chen B. Dynamics of rising CO2 bubble plumes in the QICS field experiment: Part 2–Modelling. International Journal of Greenhouse Gas Control. 2015;38:52-63. [Link] [DOI:10.1016/j.ijggc.2014.11.003]
Yuan P, Schaefer L. A thermal lattice Boltzmann two-phase flow model and its application to heat transfer problems—Part 2. Integration and validation. Journal of Fluids Engineering. 2006;128(1):151-156.
https://doi.org/10.1115/1.2137343 [Link] [DOI:10.1115/1.2137344]
Chang Q, Alexander JID. Application of the lattice Boltzmann method to two-phase Rayleigh–Benard convection with a deformable interface. J Computational Physics. 2006;212(2):473-489. [Link] [DOI:10.1016/j.jcp.2005.05.031]
Dong Z, Li W, Song Y. A numerical investigation of bubble growth on and departure from a superheated wall by lattice Boltzmann method. International Journal of Heat and Mass Transfer. 2010;53(21-22):4908-4916. [Link] [DOI:10.1016/j.ijheatmasstransfer.2010.06.001]
Attar E, Körner C. Lattice Boltzmann model for thermal free surface flows with liquid-solid phase transition. International Journal of Heat and Fluid Flow. 2011;32(1):156-163. [Link] [DOI:10.1016/j.ijheatfluidflow.2010.09.006]
Chen S, Luo KH, Zheng C. A simple enthalpy-based lattice Boltzmann scheme for complicated thermal systems. Journal of Computational Physics. 2012;231(24):8278-8294. [Link] [DOI:10.1016/j.jcp.2012.08.019]
Ikeda MK. A novel multiple-phase, multi-component, thermal lattice Boltzzman model [Dissertation]. Pittsburgh: University of Pittsburgh; 2013. [Link]
Gong S, Cheng P. Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling. International Journal of Heat and Mass Transfer. 2013;64:123-132. [Link] [DOI:10.1016/j.ijheatmasstransfer.2013.03.058]
Kamali MR, Gillissen JJJ, Van Den Akker HEAM, Sundaresan S. Lattice-Boltzmann-based two-phase thermal model for simulating phase change. Physical Review E. 2013;88(3):033302. [Link] [DOI:10.1103/PhysRevE.88.033302]
Taghilou M, Rahimian MH. Lattice Boltzmann model for thermal behavior of a droplet on the solid surface. International Journal of Thermal Sciences. 2014;86:1-11. [Link] [DOI:10.1016/j.ijthermalsci.2014.06.006]
Lee T. Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids. Computers & Mathematics with Applications. 2009;58(5):987-994. [Link] [DOI:10.1016/j.camwa.2009.02.017]
Li Q, Kang QJ, Francois MM, He YL, Luo KH. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability. International Journal of Heat and Mass Transfer. 2015;85:787-796. [Link] [DOI:10.1016/j.ijheatmasstransfer.2015.01.136]
Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E. 1993;47:1815-1819. [Link] [DOI:10.1103/PhysRevE.47.1815]