مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

محاسبه حساسیت مرتبه اول و دوم برای جریان‌های لایه‌ای تراکم‌ناپذیر پایا با استفاده از روش متغیرهای مختلط توسعه‌یافته

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه مهندسی مکانیک، مرکز کردکوی، واحد گرگان، دانشگاه آزاد اسلامی، کردکوی، ایران
چکیده
در این مقاله روش متغیرهای مختلط توسعه‌یافته برای تحلیل حساسیت مرتبه اول و دوم در مسایل جریان سیال معرفی می‌شود. برای حل معادلات ناویر- استوکس از روش المان محدود بهره گرفته و روش متغیرهای مختلط روی آن پیاده می‌شود. در روش متغیرهای مختلط از گام مختلطی که فقط شامل قسمت موهومی است استفاده می‌شود ولی در متغیرهای مختلط توسعه‌یافته از گام مختلطی که شامل قسمت موهومی و قسمت حقیقی است برای حصول کارآیی بالاتر استفاده می‌شود. در محاسبه حساسیت مرتبه اول نتایج وابسته به اندازه گام نیستند ولی در حساسیت مرتبه دوم نتایج حساسیت وابسته به اندازه گام هستند و ناگزیر باید برای حصول دقت بالاتر از فرمول‌های توسعه‌یافته استفاده کرد. روش ارایه‌شده ابتدا برای یک مساله با حل دقیق اعتبارسنجی شده و نرخ همگرایی مورد بررسی قرار می‌گیرد و سپس برای جریان یکنواخت از روی یک سیلندر استوانه‌ای به کار گرفته و سرانجام نتایج با روش تفاضل محدود مقایسه می‌شود. نتایج نشان می‌دهد که محدوده طول گام همگرایی حساسیت مرتبه دوم در روش متغیرهای مختلط توسعه‌یافته نسبت به روش متغیرهای مختلط دوبرابر شده و تا ۱۲-۱۰ می‌توان آن را کاهش داد. این یعنی کارآیی روش ارایه‌شده افزایش یافته است. روش معرفی‌شده برای طیف وسیعی از مسایل با پارامترهای ساده و پیچیده قابل کاربرد است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Computation of First and Second-Order Sensitivities for Steady State Incompressible Laminar Flow Using Extended Complex Variables Method

نویسندگان English

M. Hassanzadeh
S. Kashani
Mechanical Engineering Department, Kordkuy Center, Gorgan Branch, Islamic Azad University, Kordkuy, Iran
چکیده English

In this paper, extended complex variables method (ECVM) is presented in fluid flow problems for the first and second-order sensitivity analysis. The finite element method is used to solve the Navier-Stokes equations, and the complex variables method is implemented to it. In the complex variables method, a complex step that only includes the imaginary part is used, but in its development, it uses a complex step that includes both the imaginary part and the real part to achieve higher performance. In the first-order sensitivity calculation, the results are not dependent on the step size, but in the second-order sensitivity, the results of the sensitivity depending on the step size and inevitably the developed formulas should be used to obtain higher accuracy. The proposed method is first validated for a problem with a closed-form solution, and the convergence rate is investigated and, then, applied to a uniform flow past a cylindrical cylinder and, finally, the results are compared by finite difference method. The results show that the range of accuracy for second-order sensitivity in the extended complex variable method is doubled compared to the complex variable method and it can be reduced to 10-12. It means that the effectiveness of the proposed method has increased. The introduced method is applicable to a wide range of problems with simple and complex parameters.

کلیدواژه‌ها English

First and Second-Order Sensitivities Analysis
Extended Complex Variable Method (ECVM)
Navier-Stokes equation
Finite Element Method (FEM)
Jahangiry HA, Jahangiri A. Topology optimization of heat conduction problem via Level-Set method and the finite elements analysis. Modares Mechanical Engineering. 2017;16(12):703-710. [Persian] [Link]
Nakajima S, Kawahara M. Shape optimization of a body in compressible inviscid flows. Computer Methods in Applied Mechanics and Engineering. 2008;197(51-52):4521-4530. [Link] [DOI:10.1016/j.cma.2008.05.013]
Nouri R, Raisee M. Uncertainty quantification of electroosmotic flow in a microchannel. Modares Mechanical Engineering. 2017;17(8):291-300. [Persian] [Link]
Ilinca F, Pelletier D, Borggaard J. A continuous second‐order sensitivity equation method for time‐dependent incompressible laminar flows. International Journal for Numerical Methods in Fluids. 2007;55(6):565-587. [Link] [DOI:10.1002/fld.1477]
Kyle Anderson W, Bonhaus DL. Airfoil design on unstructured grids for turbulent flows. AIAA Journal. 1999;37(2):185-191.
https://doi.org/10.2514/2.712 [Link] [DOI:10.2514/3.14146]
Liu G, Geier M, Liu Z, Krafczyk M, Chen T. Discrete adjoint sensitivity analysis for fluid flow topology optimization based on the generalized lattice Boltzmann method. Computers & Mathematics with Applications. 2014;68(10):1374-1392. [Link] [DOI:10.1016/j.camwa.2014.09.002]
Wei Y, Zhao C, Yao Z, Hauret P, Li X, Kaliske M. Adjoint design sensitivity analysis and optimization of nonlinear structures using geometrical mapping approach. Computers & Structures. 2017;183:1-13. [Link] [DOI:10.1016/j.compstruc.2017.01.004]
Hassanzadeh M. Computation of shape design sensitivities for linear FEM using modified semi-analytical method. Modares Mechanical Engineering. 2015;15(11):73-80. [Persian] [Link]
Kyle Anderson W, Newman JC, Whitfield DL, Nielsen EJ. Sensitivity analysis for Navier-Stokes equations on unstructured meshes using complex variables. AIAA Journal. 2001;39(1):56-63.
https://doi.org/10.2514/3.14697 [Link] [DOI:10.2514/2.1270]
Lyness JN, Moler CB. Numerical differentiation of analytic functions. SIAM Journal on Numerical Analysis. 1967;4(2):202-210. [Link] [DOI:10.1137/0704019]
Lyness JN. Numerical algorithms based on the theory of complex variable. ACM '67 Proceedings of the 1967 22nd National Conference, Washington DC, USA. ACM: New York; 1967. p. 125-133. [Link] [DOI:10.1137/S003614459631241X]
Squire W, Trapp G. Using complex variables to estimate derivatives of real functions. SIAM Review. 1998;40(1):110-112. [Link] [DOI:10.1137/S003614459631241X]
Martins JRRA, Sturdza P, Alonso JJ. The complex-step derivative approximation. ACM Transactions on Mathematical Software. 2003;29(3):245-262. [Link] [DOI:10.1145/838250.838251]
Martins, Joaquim, Ilan Kroo, and Juan Alonso. An automated method for sensitivity analysis using complex variables. 38th Aerospace Sciences Meeting and Exhibit, Jan 10-13, 2000, Reno NV, USA. Reston VA: Aerospace Sciences Meetings; 2000. [Link] [DOI:10.2514/6.2000-689]
Rodriguez D. A multidisciplinary optimization method for designing inlets using complex variables. 8th Symposium on Multidisciplinary Analysis and Optimization, Sep 6-8, 2000, Long Beach CA, USA. Reston VA: Multidisciplinary Analysis Optimization Conferences; 2000. 18- Reddy JN. An introduction to nonlinear finite element analysis: With applications to heat transfer, fluid mechanics, and solid mechanics. Oxford: OUP Oxford; 2014. [Link]
Burg COE, Newman III JC. Computationally efficient, numerically exact design space derivatives via the complex Taylor's series expansion method. Computers & Fluids. 2003;32(3):373-383. [Link] [DOI:10.1016/S0045-7930(01)00044-5]
Lai KL, Crassidis JL. Extensions of the first and second complex-step derivative approximations. Journal of Computational and Applied Mathematics. 2008;219(1):276-293. [Link] [DOI:10.1016/j.cam.2007.07.026]
Reddy JN. An introduction to nonlinear finite element analysis: With applications to heat transfer, fluid mechanics, and solid mechanics. Oxford: OUP Oxford; 2014. [Link] [DOI:10.1093/acprof:oso/9780199641758.001.0001]
Grove AS, Shair FH, Petersen EE. An experimental investigation of the steady separated flow past a circular cylinder. Journal of Fluid Mechanics. 1964;19(1):60-80. [Link] [DOI:10.1017/S0022112064000544]
Tritton DJ. Experiments on the flow past a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics. 1959;6(4):547-567. [Link] [DOI:10.1017/S0022112059000829]