مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

اثر عملیات پیش‌سرد بر جوش‌پذیری سوپرآلیاژ اینکونل 718 با استفاده از لیزر پالسی Nd:YAG

نوع مقاله : پژوهشی اصیل

نویسندگان
بخش مهندسی مواد، دانشکده فنی مهندسی، دانشگاه تربیت مدرس، تهران، ایران
چکیده
اینکونل ۷۱۸ که یک سوپرآلیاژ پایه نیکلی رسوب سخت‌شونده محسوب می‌شود و براساس رسوبات گاما دابل پرایم (γ″) با ترکیب شیمیایی Ni۳Nb مستحکم می‌شود، به‌صورت گسترده برای کاربردهای دمای متوسط و بالا در صنایع مختلفی به‌کار میرود. هدف از انجام این پژوهش اثر عملیات پیش‌سرد در جوشکاری سوپرآلیاژ اینکونل ۷۱۸ با استفاده از جوشکاری لیزر پالسی Nd:YAG و بررسی ریزساختار، هندسه جوش، جوش‌پذیری و مکانیزم ترک‌خوردگی در ناحیه متاثر از حرارت این سوپرآلیاژ است. برای بررسی ریزساختار از میکروسکوپ نوری و میکروسکوپ الکترونی روبشی و برای بررسی خواص مکانیکی از آزمون سختی استفاده شد. نتایج محاسبات عددی با استفاده از رابطه رزنتال نشان داد که طول مناطق مختلف جوش شامل ناحیه خمیری، ناحیه ذوب جزیی‌شده و ناحیه متاثر از حرارت با اعمال شرایط پیشسرد به‌ترتیب ۴۶، ۴۶ و ۵۶% کاهش مییابد. نتایج محاسبات تجربی نیز نشان داد که طول ناحیه ذوب جزیی‌شده و ناحیه متاثر از حرارت و همچنین مساحت ناحیه متاثر از حرارت با اعمال شرایط پیش‎سرد به‌ترتیب ۲/۱، ۲/۵، ۲/۵برابر کاهش یافته است. با توجه به اینکه ذوبی‌شدن مرزدانه‌ها در تمامی نمونه‌ها مشاهده شد، مکانیزم محتمل برای ترک ذوبی ناحیه متاثر از حرارت، ذوب ترکیبی کاربیدهای غنی از Nb و همچنین رسوبات دلتا است که تشکیل فیلم مذاب در مرزدانه‌ها را ترغیب می‌کند و موجب ترک ذوبی در این ناحیه می‌شود. همچنین پروفیل سختی نشان داد که با اعمال شرایط پیش‏سرد، سختی فلز جوش افزایش می‏یابد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of pre-cold treatment on weldability of Inconel 718 superalloy using Nd:YAG pulsed laser

نویسندگان English

mohammad-ali rezaei
H. Naffakh-Moosavy
Materials Engineering Department, Engineering Faculty, Tarbiat Modares University, Tehran, Iran
چکیده English

Inconel 718 is precipitation strengthened Ni-base superalloy that is strengthened by “γ″ precipitate with the Ni3Nb chemical composition, is widely used for medium and high temperature applications in many industries. The aim of this study is to evaluate the effects of pre-cold treatment on microstructure, geometry of weld, Weldability, and mechanism of HAZ liquation cracking in Inconel 718 superalloy by Nd:YAG pulsed laser welding. Microstructure was investigated, using optical microscope and scanning electron microscope and hardness test was used to investigate mechanical properties. The results of numerical calculations using Rosental relation showed that the length of different welding regions including Mushy Zone (MZ), Partially Melted Zone (PMZ), and Heat Affected Zone (HAZ) decreased by 46%, 46%, and 56%, respectively. The experimental calculations also indicated that the length of PMZ and HAZ, as well as the HAZ area decreased by 2.1, 2.5, and 2.5 times, respectively. Considering that grain boundary liquation was observed in all samples, the possible mechanism for HAZ liquation cracking is constitutional liquation of Nb-rich carbides and delta precipitates that encourages the formation of liquid films in the grain boundaries and causes HAZ liquation cracking in this region. Also, the hardness profile indicates that the hardness of the weld metal increased by using pre-cold conditions.

کلیدواژه‌ها English

Inconel 718
pulsed Nd:YAG laser
HAZ Liquation Cracking
Weldability
Reed RC. The superalloys: Fundamentals and applications. Cambridge: Cambridge University Press; 2008. [Link]
Sims CT, Stoloff NS, Hagel WC. Superalloys II: High Temperature materials for aerospace and industrial power. Hoboken: John Wiley & Sons; 1987. [Link]
Decker RF. The evolution of wrought age-hardenable superalloys. Jom. 2006;58(9):32-36. [Link] [DOI:10.1007/s11837-006-0079-8]
Sundararaman M, Mukhopadhyay P, Banerjee S. Precipitation of the δ-Ni3Nb phase in two nickel base superalloys. Metallurgical Transactions A. 1988;19(3):453-465. [Link] [DOI:10.1007/BF02649259]
O'Brien RL. American Welding Society. Welding handbook: Volume 2, Welding processes. Miami: American Welding Society; 1991. p. 8. [Link]
Kou S. Welding metallurgy. Hoboken: John Wiley & Sons; 2003. pp. 431-446. [Link]
Collur M, Paul A, Debroy T. Mechanism of alloying element vaporization during laser welding. Metallurgical Transactions. 1987;18(4):733-740. [Link] [DOI:10.1007/BF02672891]
Moradi M, Ghoreishi M. Influences of laser welding parameters on the geometric profile of NI-base superalloy Rene 80 weld-bead. The International Journal of Advanced Manufacturing Technology. 2011;55(1-4):205-215. [Link] [DOI:10.1007/s00170-010-3036-1]
Mei Y, Liu Y, Liu C, Li C, Yu L, Guo Q, et al. Effects of cold rolling on the precipitation kinetics and the morphology evolution of intermediate phases in Inconel 718 alloy. Journal of Alloys and Compounds. 2015;649:949-960. [Link] [DOI:10.1016/j.jallcom.2015.07.149]
Kelly TJ, Cremisio WH, Simon W. An evaluation of the effects of filler metal composition on cast alloy 718 simulated repair welds. Welding Journal. 1989;68:14-18. [Link]
Thompson R, Dobbs J, Mayo D. The effect of heat treatment on microfissuring in alloy 718. Welding Journal. 1986;65:299-304. [Link]
Ye X, Hua X, Wang M, Lou S. Controlling hot cracking in Ni-based inconel-718 superalloy cast sheets during tungsten inert gas welding. Journal of Materials Processing Technology. 2015;222:381-390. [Link] [DOI:10.1016/j.jmatprotec.2015.03.031]
Song K, Nakata K. Microstructural and mechanical properties of friction-stir-welded and post-heat-treated Inconel 718 alloy. Journal of Alloys and Compounds. 2010;505(1):144-150. [Link] [DOI:10.1016/j.jallcom.2010.06.016]
Idowu O, Ojo O, Chaturvedi M. Effect of heat input on heat affected zone cracking in laser welded ATI Allvac 718Plus superalloy. Materials Science and Engineering: A. 2007;454-255:389-397. [Link]
Moosavy HN, Aboutalebi MR, Seyedein SH, Goodarzi M, Khodabakhshi M, Mapelli C, et al. Modern fiber laser beam welding of the newly-designed precipitation-strengthened nickel-base superalloys. Optics & Laser Technology. 2014;57:12-20. [Link] [DOI:10.1016/j.optlastec.2013.09.030]
Radhakrishna C, Rao KP. The formation and control of laves phase in superalloy 718 welds. Journal of Materials Science. 1997;32(8):1977-1984. [Link] [DOI:10.1023/A:1018541915113]
Boucher C, Varela D, Dadian M, Granjon H. Hot Cracking and recent progress in the weldability of the Ni alloys Inconel 718 and waspaloy. Revue de Metallurgie. 1976;73:817-831. [Link] [DOI:10.1051/metal/197673120817]
Ren W, Lu F, Yang R, Liu X, Li Z, Hosseini SRE. A comparative study on fiber laser and Co2 laser welding of Inconel 617. Materials & Design. 2015;76:207-214. [Link] [DOI:10.1016/j.matdes.2015.03.033]
Bologna DJ. Metallurgical factors influencing the microfissuring of alloy 718 weldments. Metals Engineering Quarterly. 1969:9(4):37-43. [Link]
Lippold JC, Kiser SD, Dupont JN. Welding metallurgy and weldability of nickel-base alloys. Hoboken: John Wiley & Sons; 2011. [Link]
Ram GJ, Reddy AV, Rao KP, Reddy GM, Sundar JS. Microstructure and tensile properties of Inconel 718 pulsed Nd-Yag laser welds. Journal of Materials Processing Technology. 2005;167(1):73-82. [Link] [DOI:10.1016/j.jmatprotec.2004.09.081]
Duvall DS, Owczarski WA. Further heat-affected-zone studies in heat-resistant nickel alloys. Welding Journal. 1967;46(9):423-432. [Link]
Chaturvedi MC. Liquation cracking in heat affected zone in Ni superalloy welds. Materials Science Forum. 2007;546-549:1163-1170. [Link] [DOI:10.4028/www.scientific.net/MSF.546-549.1163]
Okamoto H, Schlesinger ME, Mueller EM. ASM handbook volume 3: Alloy phase diagrams. Ohio: Asm International; 1992. [Link]
Ye X, Zhang P, Zhao J, Ma P. Effect of macro-and micro-segregation on hot cracking of Inconel 718 superalloy argon-arc multilayer cladding. Journal of Materials Processing Technology. 2018;258:251-258. [Link] [DOI:10.1016/j.jmatprotec.2018.04.004]