مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ردیابی مسیر گام‌برداری یک عابر پیاده با استفاده از سیستم ناوبری اینرسی

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشکده مهندسی مکانیک، دانشگاه علم‌ و‌ صنعت ایران، تهران، ایران
چکیده
با گسترش تکنولوژی‌های سبک، قابل حمل و ارزان‌قیمت، گروه جدیدی از کاربران مانند عابران پیاده به استفاده‌کنندگان سیستم‌های ناوبری اضافه شده‌اند. سیستم‌های ناوبری عابر پیاده امروزه در زمینه‌های پزشکی، ورزشی، نظامی، پویانمایی و غیره گسترش زیادی پیدا کرده‌اند. این حجم از استفاده نگاه پژوهشگران زیادی را در چند دهه‌ اخیر به خود متمرکز کرده است. در این پروژه با استفاده از سنسورهای اینرسی و شتاب‌سنج مسیر حرکت یک آتش‌نشان تخمین زده شد و هدف استفاده از روش صفرکننده سرعت در هر گام، در ناوبری عابر پیاده برای کاهش خطا و نویز موجود با استفاده از فیلتر کالمن بود. به‌دلیل آنکه خطا در ناوبری کور در صورت عدم استفاده از فیلتر ذکر شده به مرور زمان واگرا می‌شود استفاده از سنسورهای معمولی شتاب‌سنج نمی‌تواند نتیجه‌ مطلوبی را حاصل کند.

با استفاده از ماژول ترکیبی یک سنسور اندازه‌گیری اینرسی که شامل شتاب‌سنج و ژیروسکوپ است توانسته شد ردگیری از موقعیت فرد در هر لحظه در حالی که این سنسور روی کفش نصب شده است، دنبال شود. با اندازه‌گیری مسیر پیموده‌شده با استفاده از سنسور نصب‌شده روی کفش یک انسان و مقایسه نتایج با مسیر مطلوب ازپیش‌تعیین‌شده توانایی روش صفرکننده سرعت در هر گام در ناوبری، بحث و تفسیر شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Pedestrian tracking by means of inertial navigation system

نویسندگان English

S.H. Heidary
J. Farhat
B. Beigzadeh
Mechanical Engineering Faculty, Iran University of Science & Technology, Tehran, Iran
چکیده English

New users such as pedestrians are added to navigation systems with developing lightweight, portable, low-cost technologies. The pedestrian navigation systems are currently applied in miscellaneous fields including medicine, sport, military services, animation, robotics, etc. This amount of use has attracted the attention of many scholars over the last few decades. In this paper, the paths of a firefighter, as a pedestrian, was estimated approximately by the help of an inertial measurement unit (IMU) and acceleration sensors. To reduce the measured errors and noises by the sensor, zero velocity update (ZUPT) method and Kalman filter are exploited in a pedestrian navigation system. Due to the fact that the error in blind navigation is divergent over time if the filter is not used, the use of conventional accelerometer sensors cannot produce a satisfactory result.

using the combined module of an inertial measurement sensor that includes accelerometer and gyroscope, it is possible to track the person’s position at any moment while the sensor is tracked on the shoe. The ability of ZUPT in navigation system has been discussed and interpreted by measuring a path using a sensor installed on a person’s shoe and comparing the results with the desired predetermined path.

کلیدواژه‌ها English

Navigation Systems
Pedestrian
Inertial Sensors
Shoes
ZUPT
Amos KS, Cullin WJ, Carrick WH. Installation options for the NAVSTAR global positioning system in surface ships [Dissertation]. Monterey: Naval Postgraduate School; 1984. [Link]
Barnard ME. The global positioning system. EE Review. 1992;38(3):99-102. [Link] [DOI:10.1049/ir:19920043]
Fang L, Antsaklis PJ, Montestruque LA, McMickell MB, Lemmon M, Sun Y, et al. Design of a wireless assisted pedestrian dead reckoning system-the NavMote experience. IEEE Transactions on Instrumentation and Measurement. 2005;54(6):2342-2358. [Link] [DOI:10.1109/TIM.2005.858557]
Shoval N, Isaacson M. Application of tracking technologies to the study of pedestrian spatial behavior. The Professional Geographer. 2006;58(2):172-183. [Link] [DOI:10.1111/j.1467-9272.2006.00524.x]
Lachapelle G. Pedestrian navigation with high sensitivity GPS receivers and MEMS. Personal and Ubiquitous Computing. 2007;11(6):481-488. [Link] [DOI:10.1007/s00779-006-0094-3]
Baus J, Krüger A, Wahlster W. A resource-adaptive mobile navigation system. IUI '02 Proceedings of the 7th international conference on intelligent user interfaces. San Francisco: ACM; 2002. [Link] [DOI:10.1145/502716.502723]
Ishikawa T, Fujiwara H, Imai O, Okabe A. Wayfinding with a GPS-based mobile navigation system: A comparison with maps and direct experience. Journal of Environmental Psychology. 2008;28(1):74-82. [Link] [DOI:10.1016/j.jenvp.2007.09.002]
Godha S, Lachapelle G. Foot mounted inertial system for pedestrian navigation. Measurement Science and Technology. 2008;19(7):075202. [Link] [DOI:10.1088/0957-0233/19/7/075202]
Harle R. A survey of indoor inertial positioning systems for pedestrians. IEEE Communications Surveys & Tutorials. 2013;15(3):1281-1293. [Link] [DOI:10.1109/SURV.2012.121912.00075]
Chen LH, Wu EHK, Jin MH, Chen GH. Intelligent fusion of Wi-Fi and inertial sensor-based positioning systems for indoor pedestrian navigation. IEEE Sensors Journal. 2014;14(11):4034-4042. [Link] [DOI:10.1109/JSEN.2014.2330573]
Fourati H. Heterogeneous data fusion algorithm for pedestrian navigation via foot-mounted inertial measurement unit and complementary filter. IEEE Transactions on Instrumentation and Measurement. 2015;64(1):221-229. [Link] [DOI:10.1109/TIM.2014.2335912]
Jekeli C. Inertial navigation systems with geodetic applications. Berlin: Walter de Gruyter; 2012. [Link]
Skog I, Handel P, Nilsson JO, Rantakokko J. Zero-velocity detection—An algorithm evaluation. IEEE Transactions on Biomedical Engineering. 2010;57(11):2657-2666. [Link] [DOI:10.1109/TBME.2010.2060723]
Farrell JA. Aided Navigation: GPS with high rate sensors. Pennsylvania Plaza: McGraw Hill Professional; 2008. [Link]
Neto P, Pires JN, Moreira AP. 3-D position estimation from inertial sensing: Minimizing the error from the process of double integration of accelerations. Proceeding of IECON 2013 - 39th annual conference of the IEEE industrial electronics society. Piscataway: IEEE; 2013. [Link]
Moaveni B, Khosravi M, Nasiri S, Amiri M. Vehicle longitudinal velocity estimation using two new estimators and without measuring the braking torque. Modares Mechanical Engineering. 2014;14(5):183-193. [Persian] [Link]