مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تحلیلی ارتعاشات حسگر و عملگرهای پیزوالکتریک کم‌عمق کروی

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه مهندسی مکانیک، دانشکده فنی مهندسی، دانشگاه صنعتی قم، قم، ایران
چکیده
در این مقاله حل دقیق ارتعاشات آزاد یک درپوش کروی نازک از جنس پیزوالکتریک با استفاده از تئوری پوسته‌های کم‌عمق ارایه شده است. درپوش کروی پیزوالکتریک در دو حالت رفتاری حسگر و عملگر مورد بررسی قرار گرفته است. ماده پیزوالکتریک در راستای ضخامت قطبی شده و با استفاده از روش جداسازی متغیرها و توابع پتانسیل جدید، سه معادله حرکت پوسته کم‌عمق نازک به همراه معادله ماکسول به‌صورت دقیق حل شده است. در ابتدا معادله حاکم بر جابه‌جایی عرضی پوسته به‌طور مجزا به دست آمده و پس از استخراج جابه‌جایی عرضی، دیگر مجهولات مساله اعم از جابه‌جایی‌های داخل صفحه‌ای و تابع پتانسیل الکتریکی نیز به دست می‌آیند. در ادامه با اعمال شرایط مرزی مختلف مکانیکی و الکتریکی، فرکانس‌های طبیعی برای پوسته کروی پیزوالکتریک در دو حالت حسگر و عملگر محاسبه شده است. برای اعتبارسنجی فرمول‌بندی حاضر و بررسی دقت فرکانس‌ها نتایج به‌دست‌آمده با تحلیل المان محدود مساله در نرم‌افزار آباکوس مقایسه و تایید شده است. همچنین تاثیر پارامترهای مختلف مانند نسبت شعاع داخلی به شعاع انحنای پوسته، نسبت ضخامت به شعاع داخلی پوسته و شرایط مرزی مختلف، روی فرکانس‌های طبیعی مورد بررسی قرار گرفته است . نتایج نشان می‌دهد که خاصیت پیزوالکتریکی باعث افزایش انرژی کرنشی سازه شده و در هر دو حالت حسگر و عملگر باعث افزایش مقدار فرکانس‌های طبیعی می‌شود. همچنین با تغییر شرایط از حالت عملگر به حالت حسگر، جسم یک افزایش را در مقادیر فرکانس‌های طبیعی تجربه می‌کند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Analytical Solution for Vibration Analysis of Piezoelectric Shallow Spherical Sensors and Actuators

نویسندگان English

P. Darabi
M. Fadaee
Mechanical Engineering Department, Engineering Faculty, Qom University of Technology, Qom, Iran
چکیده English

In this article, an exact analytical approach is presented to analyze free vibration of a thin piezoelectric spherical shell, using thin shallow shell theory. The piezoelectric spherical shell is modeled as a sensor or an actuator. The piezoelectric material is polarized through the thickness of the shell. Using the separation of variables method as well as some new potential functions, the equations of motion and Maxwell’s equation are exactly solved, simultaneously. First, the equation of the transverse displacement of the shell is separately obtained and after extracting the transverse displacement, other unknowns such as the in-plane displacements and electrical potential function are obtained. Then, applying mechanical and electrical boundary conditions, the natural frequencies of the shell are obtained for the sensor and actuator cases. In order to validate the accuracy of the present method, the obtained results are compared to those obtained by a finite element analysis in ABAQUS software. Also, the effects of various parameters such as inner radius to radius of curvature of the shell ratio, thickness to inner radius ratio, and different boundary conditions on the natural frequencies are considered. Results show that piezoelectricity effect causes an increase in strain energy of the structure leading to increasing the natural frequencies for both sensor and actuator shells. Also, by changing the conditions from actuator state to sensor one, the structure experiences an increase in the natural frequencies.

کلیدواژه‌ها English

Vibration
Spherical Cap
Piezoelectric
Sensor and Actuator
analytical method
Chen LW, Lin CY, Wang CC. Dynamic stability analysis and control of a composite beam with piezoelectric layers. Composite Structures. 2002;56(1):97-109. [Link] [DOI:10.1016/S0263-8223(01)00183-0]
Cupiał P. Three-dimensional natural vibration analysis and energy considerations for a piezoelectric rectangular plate. Journal of Sound and Vibration. 2005;283(3-5):1093-1113. [Link] [DOI:10.1016/j.jsv.2004.06.019]
Haojiang D, Rongqiao X, Weiqui Ch. Exact solutions for free vibration of transversely isotropic piezoelectric circular plates. Acta Mechanica Sinica. 2000;16(2):141-147. [Link] [DOI:10.1007/BF02486706]
Wang Q, Quek ST, Sun CT, Liu X. Analysis of piezoelectric coupled circular plate. Smart Materials and Structures. 2001;10(2):229-239. [Link] [DOI:10.1088/0964-1726/10/2/308]
Liu X, Wang Q, Quek ST. Analytical solution for free vibration of piezoelectric coupled moderately thick circular plates. International Journal of Solids and Structures. 2002;39(8):2129-2151. [Link] [DOI:10.1016/S0020-7683(02)00081-1]
Hosseini-Hashemi Sh, Es'haghi M, Rokni Damavandi Taher H. An exact analytical solution for freely vibrating piezoelectric coupled circular/annular thick plates using Reddy plate theory. Composite Structures. 2010;92(6):1333-1351. [Link] [DOI:10.1016/j.compstruct.2009.11.006]
Hosseini Hashemi Sh, Es'haghi M, Karimi M. Closed-form solution for free vibration of piezoelectric coupled annular plates using Levinson plate theory. Journal of Sound and Vibration. 2010;329(9):1390-1408. [Link] [DOI:10.1016/j.jsv.2009.10.043]
Heydarpour Y, Malekzadeh P, Golbahar Haghighi M, Vaghefi M. Thermoelastic analysis of rotating laminated functionally graded cylindrical shells using layerwise differential quadrature method. Acta Mechanica. 2012;223(1):81-93. [Link] [DOI:10.1007/s00707-011-0551-6]
Li SR, Fu XH, Batra RC. Free vibration of three-layer circular cylindrical shells with functionally graded middle layer. Mechanics Research Communications. 2010;37(6):577-580. [Link] [DOI:10.1016/j.mechrescom.2010.07.006]
Malekzadeh P, Fiouz AR, Sobhrouyan M. Three-dimensional free vibration of functionally graded truncated conical shells subjected to thermal environment. International Journal of Pressure Vessels and Piping. 2012;89:210-221. [Link] [DOI:10.1016/j.ijpvp.2011.11.005]
Santos H, Soares CM, Soares CA, Reddy JN. A finite element model for the analysis of 3D axisymmetric laminated shells with piezoelectric sensors and actuators: Bending and free vibrations. Computers and Structures. 2008;86(9):940-947. [Link] [DOI:10.1016/j.compstruc.2007.04.013]
Alibeigloo A, Madoliat R. Static analysis of cross-ply laminated plates with integrated surface piezoelectric layers using differential quadrature. Composite Structures. 2009;88(3):342-353. [Link] [DOI:10.1016/j.compstruct.2008.04.018]
Alibeigloo A, Kani AM. 3D free vibration analysis of laminated cylindrical shell integrated piezoelectric layers using the differential quadrature method. Applied Mathematical Modelling. 2010;34(12):4123-4137. [Link] [DOI:10.1016/j.apm.2010.04.010]
Alibeigloo A, Kani AM, Pashaei MH. Elasticity solution for the free vibration analysis of functionally graded cylindrical shell bonded to thin piezoelectric layers. International Journal of Pressure Vessels and Piping. 2012;89:98-111. [Link] [DOI:10.1016/j.ijpvp.2011.10.020]
Huy Bich D, Van Tung H. Non-linear axisymmetric response of functionally graded shallow spherical shells under uniform external pressure including temperature effects. International Journal of Non-Linear Mechanics. 2011;46(9):1195-1204. [Link] [DOI:10.1016/j.ijnonlinmec.2011.05.015]
Duc ND, Anh VTT, Cong PH. Nonlinear axisymmetric response of FGM shallow spherical shells on elastic foundations under uniform external pressure and temperature. European Journal of Mechanics A Solids. 2014;45:80-89. [Link] [DOI:10.1016/j.euromechsol.2013.11.008]
Sabzikar Boroujerdy M, Eslami MR. Axisymmetric snap-through behavior of Piezo-FGM shallow clamped spherical shells under thermo-electro-mechanical loading. International Journal of Pressure Vessels and Piping. 2014;120-121:19-26. [Link] [DOI:10.1016/j.ijpvp.2014.03.008]
Viola E, Rossetti L, Fantuzzi N, Tornabene F. Generalized stress-strain recovery formulation applied to functionally graded spherical shells and panels under static loading. Composite Structures. 2016;156:145-164. [Link] [DOI:10.1016/j.compstruct.2015.12.060]
Kioua H, Mirza Sh. Piezoelectric induced bending and twisting of laminated composite shallow shells. Smart Materials and Structures. 2000;9(4):476-484. [Link] [DOI:10.1088/0964-1726/9/4/310]
Zenkour AM, Arefi M, Alshehri NA. Size-dependent analysis of a sandwich curved nanobeam integrated with piezomagnetic face-sheets. Results in Physics. 2017;7:2172-2182. [Link] [DOI:10.1016/j.rinp.2017.06.032]
Shariyat M, Yaghotian A. Buckling analysis of piezoelectric cylindrical shell with initial imperfection under electro-mechanical loading based on a higher order theory. Iranian Journal of Mechanical Engineering Transaction of the ASME. 2007;9(1):41-58. [Persian] [Link]
Kani A, Alibeigloo A. Vibration analysis of laminated cylindrical shell with piezoelectric layer using differential quadrature method. 18th Annual International Conference of Iranian Society of Mechanical Engineers, Sharif University of Technology, Iran, 2010. Tehran: Marja Danesh; 2010. [Persian] [Link]
Nikoei S, Hassani B. Static and free vibration isogeometric analysis of laminated composite plates integrated with piezoelectric using Reissner-Mindlin theory. Modares Mechanical Engineering. 2018;17(11):181-191. [Persian] [Link]
Qatu MS. Vibration of laminated shells and plates. 1st Edition. Amsterdam: Elsevier, Academic Press; 2004. [Link]
Es'haghi M, Hosseini Hashemi Sh, Fadaee M. Vibration analysis of piezoelectric FGM sensors using an accurate method. International Journal of Mechanical Sciences. 2011;53(8):585-594. [Link] [DOI:10.1016/j.ijmecsci.2011.05.005]