مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه آزمایشگاهی اثر نانوسیال سورفاپور بر انرژی آزاد سطحی سنگ کلسیت

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران، ایران
چکیده
هدف از این پژوهش بررسی آزمایشگاهی انرژی آزاد سطحی روی سطح سنگ کلسیت و همچنین روی سطح کلسیت پیرشده در نانوسیال سورفاپور با استفاده از اندازه‌گیری زاویه تماس است. بدین منظور نمونه‌های کلسیت با برش در ابعاد تقریبی cm۳۴/۰×۳×۳ و صیقلی‌کردن برای ایجاد زبری‌های مختلف تهیه شد. خلوص و میزان زبری نمونه‌ها به‌ترتیب از آزمون‌های پراش اشعه ایکس و میکروسکوپ نیروی اتمی تعیین شدند. با استفاده از زاویه تماس استاتیک روی سطح کلسیت و کلسیت پیرشده در نانوسیال، انرژی سطحی توسط سه روش میانگین هندسی، میانگین حسابی و نمودار زیسمن نشان از انرژی آزاد سطحی بین ۴۰-۳۰میلی‌نیوتن بر متر و غلبه نیروهای قطبی بر پراکندگی در سطح کلسیت است. پس از پیرشدن سطح کلسیت در نانوسیال، انرژی سطحی به کمتر از ۱۲میلی‌نیوتن بر متر رسید. این کاهش انرژی سطحی نشان‌دهنده افزایش زاویه تماس سیالات روی سطح کلسیت پیرشده در نانوسیال است. نتایج این تحقیق به درک بهتر خصوصیات سطحی کلسیت در حضور نانوسیال و همچنین چگونگی تغییر خاصیت ترشوندگی آن به شرایط ترشونده با گاز با درنظرگرفتن زاویه تماس استاتیک کمک می‌کند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental Study of Surfapore Nanofluid Effect on Surface Free Energy of Calcite Rock

نویسندگان English

M. Azadi Tabar
M.H. Ghazanfari
Chemical & Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
چکیده English

The aim of this study was to investigate the surface free energy on the surface of calcite rock and also on the surface of aged calcite in Surfapore Nanofluid using a contact angle measurement. For this purpose, calcite surfaces were prepared by cutting to an approximate size of 3×3×0.4cm3 and grinded and polished to achieve different roughnesses. The purity and roughness of the samples were determined by X-ray diffraction and atomic force microscopy, respectively. Using the static contact angle on the surface of calcite and calcite aged in the Nanofluid, surface energy determined by three methods of geometric mean, arithmetic mean and Zisman plot showed surface free energy between 30-40mN/m, and polar forces overcome dispersion at calcite surface. After aging calcite surface in the Nanofluid, surface energy reached less than 12mN/m. This surface free energy reduction indicates an increase in the contact angle of the fluids on the aged calcite surface in the Nanofluid. The results of this study will help to better understand the surface properties of calcite in the presence of Nanofluid, as well as how to change its wettability to gas wet conditions, taking into account the static contact angle.

کلیدواژه‌ها English

Nanofluid
Calcite Rock
Surface Free Energy
Static Contact Angle
Gindl M, Sinn G, Gindl W, Reiterer A, Tschegg S. A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Colloids and Surfaces A Physicochemical and Engineering Aspects. 2001;181(1-3):279-287. [Link] [DOI:10.1016/S0927-7757(00)00795-0]
Kozbial A, Li Z, Conaway C, McGinley R, Dhingra Sh, Vahdat V, et al. Study on the surface energy of graphene by contact angle measurements. Langmuir. 2014;30(28):8598-8606. [Link] [DOI:10.1021/la5018328]
Gaur APS, Sahoo S, Ahmadi M, Dash SP, Guinel MJF, Katiyar RS. Surface energy engineering for tunable wettability through controlled synthesis of MoS2. Nano Letters. 2014;14(8):4314-4321. [Link] [DOI:10.1021/nl501106v]
Good RJ, Girifalco LA. A theory for estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data. The Journal of Physical Chemistry. 1960;64(5):561-565. [Link] [DOI:10.1021/j100834a012]
Jańczuk B, Chibowski E, Staszczuk P. Determination of surface free energy components of marble. Journal of Colloid and Interface Science. 1983;96(1):1-6. [Link] [DOI:10.1016/0021-9797(83)90002-4]
Kloubek J. Development of methods for surface free energy determination using contact angles of liquids on solids. Advances in Colloid and Interface Science. 1992;38:99-142. [Link] [DOI:10.1016/0001-8686(92)80044-X]
Owens DK, Wendt RC. Estimation of the surface free energy of polymers. Journal of Applied Polymer Science. 1969;13(8):1741-1747. [Link] [DOI:10.1002/app.1969.070130815]
Busscher HJ, Weerkamp AH, Van Der Mei HC, Van Pelt AW, De Jong HP, Arends J. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Applied and Environmental Microbiology. 1984;48(5):980-983. [Link]
Planinšek O, Trojak A, Srčič S. The dispersive component of the surface free energy of powders assessed using inverse gas chromatography and contact angle measurements. International Journal of Pharmaceutics. 2001;221(1-2):211-217. [Link] [DOI:10.1016/S0378-5173(01)00687-1]
Janssen D, De Palma R, Verlaak S, Heremans P, Dehaen W. Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide. Thin Solid Films. 2006;515(4):1433-1438. [Link] [DOI:10.1016/j.tsf.2006.04.006]
Drelich J, Miller JD, Hupka J. The effect of drop size on contact angle over a wide range of drop volumes. Journal of Colloid and Interface Science. 1993;155(2):379-385. [Link] [DOI:10.1006/jcis.1993.1050]
Choi W, Tuteja A, Mabry JM, Cohen RE, McKinley GH. A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. Journal of Colloid and Interface Science. 2009;339(1):208-216. [Link] [DOI:10.1016/j.jcis.2009.07.027]
Drelich J, Wilbur JL, Miller JD, Whitesides GM. Contact angles for liquid drops at a model heterogeneous surface consisting of alternating and parallel hydrophobic/hydrophilic strips. Langmuir. 1996;12(7):1913-1922. [Link] [DOI:10.1021/la9509763]
Li K, Liu Y, Zheng H, Huang G, Li G. Enhanced gas-condensate production by wettability alteration to gas wetness. Journal of Petroleum Science and Engineering. 2011;78(2):505-509. [Link] [DOI:10.1016/j.petrol.2011.08.001]
Li K, Firoozabadi A. Experimental study of wettability alteration to preferential gas-wetting in porous media and its effects. SPE Reservoir Evaluation and Engineering. 2000;3(2):139-149. [Link] [DOI:10.2118/62515-PA]
Fahimpour J, Jamiolahmady M. Optimization of fluorinated wettability modifiers for gas/condensate carbonate reservoirs. Society of Petroleum Engineers Journal. 2015;20(4):729-742. [Link]
Wu S, Firoozabadi A. Permanent alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. Transport in Porous Media. 2010;85(1):189-213. [Link] [DOI:10.1007/s11242-010-9554-3]
Fahes MM, Firoozabadi A. Wettability alteration to intermediate gas-wetting in gas-condensate reservoirs at high temperatures. Society of Petroleum Engineers Journal. 2007;12(4):397-407. [Link]
Aminnaji M, Fazeli H, Bahramian A, Gerami Sh, Ghojavand H. Wettability alteration of reservoir rocks from liquid wetting to gas wetting using nanofluid. Transport in Porous Media. 2015;109(1):201-216. [Link] [DOI:10.1007/s11242-015-0509-6]
Tang GQ, Firoozabadi A. Wettability alteration to intermediate gas-wetting in porous media at elevated temperatures. Transport in Porous Media. 2003;52(2):185-211. [Link] [DOI:10.1023/A:1023579706686]
Karandish GR, Rahimpour MR, Sharifzadeh S, Dadkhah AA. Wettability alteration in gas-condensate carbonate reservoir using anionic fluorinated treatment. Chemical Engineering Research and Design. 2015;93:554-64. [Link] [DOI:10.1016/j.cherd.2014.05.019]
Sharifzadeh S, Hassanajili Sh, Rahimpour MR. Wettability alteration of gas condensate reservoir rocks to gas wetness by sol-gel process using fluoroalkylsilane. Journal of Applied Polymer Science. 2013;128(6):4077-4085. [Link] [DOI:10.1002/app.38632]
Jin J, Wang Y, Wang K, Ren J, Bai B, Dai C. The effect of fluorosurfactant-modified nano-silica on the gas-wetting alteration of sandstone in a CH4-liquid-core system. Fuel. 2016;178:163-171. [Link] [DOI:10.1016/j.fuel.2016.03.040]
Mousavi MA, Hassanajili Sh, Rahimpour MR. Synthesis of fluorinated nano-silica and its application in wettability alteration near-wellbore region in gas condensate reservoirs. Applied Surface Science. 2013;273:205-214. [Link] [DOI:10.1016/j.apsusc.2013.02.014]
Müller M, Oehr Ch. Comments on "an essay on contact angle measurements" by Strobel and Lyons. Plasma Processes and Polymers. 2011;8(1):19-24. [Link] [DOI:10.1002/ppap.201000115]
Roudman AR, DiGiano FA. Surface energy of experimental and commercial nanofiltration membranes: Effects of wetting and natural organic matter fouling. Journal of Membrane Science. 2000;175(1):61-73. [Link] [DOI:10.1016/S0376-7388(00)00409-9]
Abbasian A, Ghaffarian SR, Mohammadi N, Fallahi D. Sensitivity of surface free energy analysis methods to the contact angle changes attributed to the thickness effect in thin films. Journal of Applied Polymer Science. 2004;93(4):1972-1980. [Link] [DOI:10.1002/app.20672]
Stalder AF, Melchior T, Müller M, Sage D, Blu T, Unser M. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids and Surfaces A Physicochemical and Engineering Aspects. 2010;364(1-3):72-81. [Link] [DOI:10.1016/j.colsurfa.2010.04.040]
Drelich J. The effect of drop (bubble) size on contact angle at solid surfaces. The Journal of Adhesion. 1997;63(1-3):31-51. [Link] [DOI:10.1080/00218469708015212]
Li D. Drop size dependence of contact angles and line tensions of solid-liquid systems. Colloids and Surfaces A Physicochemical and Engineering Aspects. 1996;116(1-2):1-23.
https://doi.org/10.1016/0927-7757(96)03582-0 [Link] [DOI:10.1016/S0927-7757(00)00623-3]
Li D, Lin FY, Neumann AW. Effect of corrugations of the three-phase line on the drop size dependence of contact angles. Journal of Colloid and Interface Science. 1991;142(1):224-231. [Link] [DOI:10.1016/0021-9797(91)90049-E]
Neumann AW, David R, Zuo Y, Editors. Applied surface thermodynamics. 2nd Edition. Boca Raton: CRC press; 2010. [Link]
Li W, Amirfazli A. A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces. Journal of Colloid and Interface Science. 2005;292(1):195-201. [Link] [DOI:10.1016/j.jcis.2005.05.062]
Li W, Amirfazli A. Microtextured superhydrophobic surfaces: A thermodynamic analysis. Advances in Colloid and Interface Science. 2007;132(2):51-68. [Link] [DOI:10.1016/j.cis.2007.01.001]
Wenzel RN. Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry. 1936;28(8):988-994. [Link] [DOI:10.1021/ie50320a024]
Lee BB, Chan ES, Ravindra P, Khan TA. Surface tension of viscous biopolymer solutions measured using the du Nouy ring method and the drop weight methods. Polymer Bulletin. 2012;69(4):471-489. [Link] [DOI:10.1007/s00289-012-0782-2]
Cassie ABD, Baxter S. Wettability of porous surfaces. Transactions of the Faraday Society. 1944;40:546-551. [Link] [DOI:10.1039/tf9444000546]
Erfani Gahrooei HR, Ghazanfari MH. Application of a water based nanofluid for wettability alteration of sandstone reservoir rocks to preferentially gas wetting condition. Journal of Molecular Liquids. 2017;232:351-360. [Link] [DOI:10.1016/j.molliq.2017.02.097]