مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی انتقال حرارت نانوسیال در جریان الکترواسموزی و فشاری متناوب در یک میکروکانال با استفاده از روش شبکه پوآسون- بولتزمن

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه تبدیل انرژی، دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران
چکیده
در مطالعه حاضر، میدان جریان الکترواسموزی و فشاری نانوسیال در پتانسیل سطح همگن در میکروکانال با اعمال معادله پواسون- بولتزمن و فرض جریان دوبُعدی، آرام، تراکم‌ناپذیر و پایا بررسی شده است. توزیع نانوذرات در سیال پایه به‌شکل همگن در نظر گرفته شده و در نتیجه جریان نانوسیال به‌شکل تک‌فاز است. در این مدل‌سازی نانوسیال از مدل پاتل استفاده شده که در آن وابستگی ضریب هدایت حرارتی به دما لحاظ شده است. به‌منظور تایید صحت حل عددی، نتایج حاصل با حل تحلیلی موجود برای هر بخش مقایسه شده و مطابقت خوبی به دست آمده است. سپس در ادامه، تاثیر پارامترهایی از قبیل درصد مولار یون، کسر حجمی و قطر نانوذرات روی جریان سیال و انتقال حرارت بررسی شده است. نتایج نشان می‌دهد که با ثابت‌نگه‌داشتن میدان الکتریکی و افزایش گرادیان فشار، عدد ناسلت موضعی کاهش و با ثابت‌نگه‌داشتن گرادیان فشار و افزایش میدان الکتریکی، عدد ناسلت افزایش می‌یابد. عدد ناسلت متوسط برای قطر نانوذرات ۱۰۰، ۱۱۰ و ۱۲۰نانومتر به‌ترتیب ۴۵، ۳۵ و ۲۵% افزایش پیدا می‌کند. زمانی که ۰/۰۵=r باشد، با افزایش غلظت یون از ۴-۱۰ تا ۲-۱۰ عدد ناسلت متوسط به اندازه ۱۰% افزایش می‌یابد. همچنین می‌توان با انتخاب زاویه فاز مناسب برای محرک‌های متناوب الکتریکی و فشاری، میزان و جهت سرعت و شکل تقعر پروفیل سرعت را کنترل نمود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Study of Heat Transfer of Periodic Electroosmotic/Pressure Driven Nanofluid Flow in a Microchannel Using the Poisson-Boltzmann Method

نویسندگان English

N. Sheikhizad
M. Kalteh
Energy Conversion Department, Mechanical Engineering Faculty, University of Guilan, Rasht, Iran
چکیده English

In the present study, the electroosmotic and pressure driven flow of nanofluid in a microchannel with homogeneous surface potential is investigated by using the Poisson-Boltzmann equation and the flow field is assumed to be two-dimensional, laminar, incompressible, and steady. Distribution of nanoparticles in the base fluid is assumed to be homogeneous; therefore the nanofluid flow is modeled as a single phase. The thermal conductivity of the nanofluid is modeled by using the Patel model to account for temperature dependency. In order to validate the numerical solution, the results are compared with available analytical solutions and the comparison shows a good match with the results. Then, the effects of different parameters such as ion molar percentage, volume fraction, and nanoparticles’ diameter on the flow field and heat transfer are examined. The results show that by fixing the electric field and increasing the pressure gradient, the local Nusselt number will decrease, and by fixing the pressure gradient and enhancing the electric field, the Nusselt number increases. The average Nusselt number increases about 45, 35 and 25% while nanoparticles’ diameters are 100, 110 and 120nm, respectively. For Γ=0.05, the average Nusselt number increases 10% while ion concentration changes from 10-4 to 10-2. Furthermore, the direction and magnitude of velocity and concavity of the velocity profile can be controlled by choosing a suitable phase angle between electrical and pressure driven flow parameters.

کلیدواژه‌ها English

Electroosmotic flow
Microchannel
Boltzmann Method
Nanofluid
Periodic Electroosmotic and Pressure Driven
Barkhordari M, Etemad SG. Numerical study of slip flow heat transfer of non-Newtonian fluids in circular microchannels. International Journal of Heat and Fluid Flow. 2007;28(5):1027-1033. [Link] [DOI:10.1016/j.ijheatfluidflow.2007.02.007]
Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Letters. 1981;2(5):126-129. [Link] [DOI:10.1109/EDL.1981.25367]
Santra AK, Sen S, Chakraborty N. Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates. International Journal of Thermal Sciences. 2009;48(2):391-400. [Link] [DOI:10.1016/j.ijthermalsci.2008.10.004]
Raisi A, Ghasemi B, Aminossadati SM. A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions. Numerical Heat Transfer Part A Applications. 2011;59(2):114-129. [Link] [DOI:10.1080/10407782.2011.540964]
Maynes D, Webb BW. Fully developed electro-osmotic heat transfer in microchannels. International Journal of Heat and Mass Transfer. 2003;46(8):1359-1369. [Link] [DOI:10.1016/S0017-9310(02)00423-4]
Horiuchi K, Dutta P. Joule heating effects in electroosmotically driven microchannel flows. International Journal of Heat and Mass Transfer. 2004;47(14-16):3085-3095. [Link] [DOI:10.1016/j.ijheatmasstransfer.2004.02.020]
Park HM, Lee JS, Kim TW. Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels. Journal of Colloid and Interface Science. 2007;315(2):731-739. [Link] [DOI:10.1016/j.jcis.2007.07.007]
Chai Z, Shi B. Simulation of electro-osmotic flow in microchannel with lattice Boltzmann method. Physics Letters A. 2007;364(3-4):183-188. [Link] [DOI:10.1016/j.physleta.2006.12.006]
Alizadeh A, Wang JK, Pooyan S, Mirbozorgi SA, Wang M. Numerical study of active control of mixing in electro-osmotic flows by temperature difference using lattice Boltzmann methods. Journal of Colloid and Interface Science. 2013;407:546-555. [Link] [DOI:10.1016/j.jcis.2013.06.026]
Mohammadipoor OR, Niazmand H, Mirbozorgi SA. Numerical simulation of electroosmotic flow in flat microchannels with lattice Boltzmann method. Arabian Journal for Science and Engineering. 2014;39(2):1291-1302. [Link] [DOI:10.1007/s13369-013-0679-x]
Lin TY, Chen CL. Analysis of electroosmotic flow with periodic electric and pressure fields via the lattice Poisson-Boltzmann method. Applied Mathematical Modelling. 2013;37(5):2816-2829. [Link] [DOI:10.1016/j.apm.2012.06.032]
Chakraborty S, Roy S. Thermally developing electroosmotic transport of nanofluids in microchannels. Microfluidics and Nanofluidics. 2008;4(6):501-511. [Link] [DOI:10.1007/s10404-007-0212-1]
Sarkar S, Ganguly S. Fully developed thermal transport in combined pressure and electroosmotically driven flow of nanofluid in a microchannel under the effect of a magnetic field. Microfluidics and Nanofluidics. 2015;18(4):623-636. [Link] [DOI:10.1007/s10404-014-1461-4]
Ganguly S, Sarkar S, Hota TK, Mishra M. Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a microchannel under the effect of magnetic field. Chemical Engineering Science. 2015;126:10-21. [Link] [DOI:10.1016/j.ces.2014.11.060]
Misra JC, Sinha A. Electro-osmotic flow and heat transfer of a non-Newtonian fluid in a hydrophobic microchannel with Navier slip. Journal of Hydrodynamics. 2015;27(5):647-657. [Link] [DOI:10.1016/S1001-6058(15)60527-3]
Shit GC, Mondal A, Sinha A, Kundu PK. Effects of slip velocity on rotating electro-osmotic flow in a slowly varying micro-channel. Colloids and Surfaces A Physicochemical and Engineering Aspects. 2016;489:249-255. [Link] [DOI:10.1016/j.colsurfa.2015.10.036]
Tan Z, Liu J. Electro-osmotic flow of Eyring fluids in a circular microtube with Navier's slip boundary condition. Physics Letters A. 2017;381(32):2573-2577. [Link] [DOI:10.1016/j.physleta.2017.06.004]
Bag N, Bhattacharyya S. Electroosmotic flow of a non-Newtonian fluid in a microchannel with heterogeneous surface potential. Journal of Non-Newtonian Fluid Mechanics. 2018;259:48-60. [Link] [DOI:10.1016/j.jnnfm.2018.05.005]
Kamali R, Nasiri Soloklou M, Hadidi H. Numerical simulation of electroosmotic flow in rough microchannels using the lattice Poisson-Nernst-Planck methods. Chemical Physics. 2018;507:1-9. [Link] [DOI:10.1016/j.chemphys.2018.04.008]
Aminossadati SM, Raisi A, Ghasemi B. Effects of magnetic field on nanofluid forced convection in a partially heated microchannel. International Journal of Non-Linear Mechanics. 2011;46(10):1373-1382. [Link] [DOI:10.1016/j.ijnonlinmec.2011.07.013]
Brinkman HC. The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics. 1952;20(4):571. [Link] [DOI:10.1063/1.1700493]
Patel HE, Sundararajan T, Pradeep T, Dasgupta A, Dasgupta N, Das SK. A micro-convection model for thermal conductivity of nanofluids. Pramana. 2005;65(5):863-869. [Link] [DOI:10.1007/BF02704086]
Doyle WT, Jacobs IS. Effective cluster model of dielectric enhancement in metal-insulator composites. Physical Review B. 1990;42(15):9319-9327. [Link] [DOI:10.1103/PhysRevB.42.9319]
Wang J, Wang M, Li Z. Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels. Journal of Colloid and Interface Science. 2006;296(2):729-736. [Link] [DOI:10.1016/j.jcis.2005.09.042]
Wolf-Gladrow DA. Lattice-gas cellular automata and lattice Boltzmann models: An introduction. 2nd Edition. Berlin: Springer; 2004. [Link]
Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids. 1997;9(6):1591-1598. [Link] [DOI:10.1063/1.869307]
Mohamad AA. Lattice Boltzmann method: Fundamentals and engineering applications with computer codes. 1st Edition. Berlin: Springer; 2011. [Link] [DOI:10.1007/978-0-85729-455-5]
Masliyah JH, Bhattacharjee S. Numerical simulation of electrokinetic phenomena. In: Masliyah JH, Bhattacharjee S. Electrokinetic and colloid transport phenomena. Hoboken: John Wiley & Sons; 2006. pp. 537-611. [Link] [DOI:10.1002/0471799742]