مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تجزیه و تحلیل رژیم جریانی- حرارتی با مدل توسعه‌یافته برینکمن درون کویل متخلخل با شار حرارتی متوسط خورشیدی

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه بیرجند، بیرجند، ایران
چکیده
در این مقاله به بررسی تاثیرات پارامترهای جریانی- حرارتی بر جریان درون کویل متخلخل پرداخته شده است. همچنین بررسی ماهیت لایه مرزی، توزیع سرعت، فشار و اثرات توزیع میدان حرارتی درون کویل متخلخل به‌عنوان محیطی با قابلیت انتقال حرارت بالا انجام شده که این بررسی شامل استفاده از روش برینکمن توسعه‌یافته برای حرکت سیال و قانون توانی برای محاسبه ضریب انتقال حرارت هدایتی محیط با درنظرگرفتن شار حرارتی متوسط خورشیدی در مقادیر مختلف درصد تخلخل و نفوذپذیری است. برای حل مساله از نرم‌افزار کامسول بر مبنای روش المان محدود و الگوریتم حلی محیط متخلخل در حلگر MUMPS استفاده شده است. تغییرات دمای بی‌بُعد بین نتایج به‌دست‌آمده در مدل حاضر و نتایج آزمایشگاهی با یکدیگر در شرایط مشابه مقایسه شده‌اند که این مقایسه تطابق قابل قبولی بین نتایج با حداکثر خطای ۳% را نشان می‌دهد. در مقدار نفوذپذیری ثابت با کاهش ضریب تخلخل، پروفیل سرعت به‌دلیل کاهش وجود خلل و فرج درون کویل کشیده‌تر می‌شود به‌طوری که جریان در کویل متخلخل شتاب گرفته و حداکثر مقدار سرعت پروفیل در ضریب تخلخل برابر با ۰/۲ و ۲/۵متر بر ثانیه است. در متخلخل‌‎شدن کویل مقدار عدد ناسلت افزایش یافته به‌طوری که بیشترین اختلاف بین دو حالت متخلخل و بدون تخلخل در ابتدای کویل و برابر با ۳۲% و کمترین مقدار این اختلاف ۲۷% است. در داخل کویل متخلخل جذب انرژی خورشیدی بیشتر و در نتیجه مقدار انتقال حرارت بهبود می‌یابد. اگر چه مقدار اُفت فشار نیز افزایش می‌یابد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Analysis of the Fluid-Thermal Regime with the Developed Brinkman Model in a Porous Coil for Solar Energy Application

نویسندگان English

S.A. Fanaee
M. Rezapour
Mechanical Engineering Department, Engineering Faculty, University of Birjand, Birjand, Iran
چکیده English

In this paper, heat transfer and fluid flow characteristics in a porous coil have been investigated. The characteristic of the boundary layer, distribution of velocity, pressure, and thermal field effects into a porous coil as high heat transfer resource have been analyzed. The developed Brinkman method in fluid flow and power law model of conduction heat transfer coefficient considering porosity and permeability factor is calculated for constant solar heat flux. In order to solve the problem, the COMSOL software based on finite element method with porous medium algorithm is used, using the MUMPS solver. The comparison between variation of normalized temperature at the presented model and experimental data at similar conditions shows an acceptable agreement with an error up to 3%. At constant permeability, decreasing the porosity coefficient, velocity profile is extended due to presence of pores into coil with an accelerated flow, so that the maximum velocity is equal to 2.5m/s at porosity coefficient of 0.2. In porous coil, Nusselt number increased, where the greatest difference between porous and the nonporous coil occurs at the beginning of the coil, with a value of 32%, and the smallest difference is 27%. In the porous coil, absorbing solar energy is higher and the heat transfer is improved. However, the amount of pressure drop also increases.



کلیدواژه‌ها English

Porous Aluminum Coil
Developed Brinkman Equation
Fluid-thermal Regime
Solar Flux
Nusselt number
Bayomy AM, Saghir MZ. Experimental study of using c-Al2O3-water nanofluid flow through aluminum foam heat sink: Comparison with numerical approach. International Journal of Heat and Mass Transfer. 2016;107:181-203. [Link] [DOI:10.1016/j.ijheatmasstransfer.2016.11.037]
Boomsma K, Poulikakos D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. International Journal of Heat and Mass Transfer. 2001;44(4):827-836. [Link] [DOI:10.1016/S0017-9310(00)00123-X]
Nield DA, Bejan A. Convection in porous media. 3rd Edition. New York: Springer Science & Business Media; 2006. [Link]
Dukhan N, Chen KC. Heat transfer measurements in metal foam subjected to constant heat flux. Experimental Thermal and Fluid Science. 2007;32(2):624-631. [Link] [DOI:10.1016/j.expthermflusci.2007.08.004]
Dukhan N, Ratowski J. Convection heat transfer analysis for darcy flow in porous media: A new two-dimensional solution. 14th International Heat Transfer Conference, 8-13 August, 2010, Washington DC, USA. New York: American Society of Mechanical Engineers (ASME); 2010. [Link] [DOI:10.1115/IHTC14-22160]
Furman E, Finkelstein A, Cherny M. Permeability of aluminium foams produced by replication casting. Metals. 2013;3(1):49-57. [Link] [DOI:10.3390/met3010049]
Guo L, Yu J. Dynamic bending response of double cylindrical tubes filled with aluminum foam. International Journal of Impact Engineering. 2011;38(2-3):85-94. [Link] [DOI:10.1016/j.ijimpeng.2010.10.004]
Hamdan MH. Single-phase flow through porous channels a review of flow models and channel entry conditions. Applied Mathematics and Computation. 1994;62(2-3):203-222. [Link] [DOI:10.1016/0096-3003(94)90083-3]
Lu W, Zhao CY, Tassou SA. Thermal analysis on metal-foam filled heat exchangers. Part I: Metal-foam filled pipes. International Journal of Heat and Mass Transfer. 2006;49(15-16):2751-2761. [Link] [DOI:10.1016/j.ijheatmasstransfer.2005.12.012]
Mancin S, Zilio C, Diani A, Rossetto L. Experimental air heat transfer and pressure drop through copper foams. Experimental Thermal and Fluid Science. 2012;36:224-232. [Link] [DOI:10.1016/j.expthermflusci.2011.09.016]
Rezapour M, Fanaee SA. The modeling the thermal-fluid effects of porous media on the mixture of hydrogen-air passing through it with COMSOL. 4th Conference on Hydrogen and Fuel Cells, 9 May, 2017, Tehran, Iran. Tehran: Association of Hydrogen and Fuel Cells; 2017. [Persian] [Link]
Nakayama A, Shenoy AV. Combined forced and free convection heat transfer in power-law fluid-saturated porous media. Applied Scientific Research. 1993;50(1):83-95. [Link] [DOI:10.1007/BF01086454]
Özgümüş T, Mobedi M, Özkol Ü, Nakayama A. Thermal dispersion in porous media- a review on approaches in experimental studies. 6th International Advanced Technologies Symposium (IATS'11), 16-18 May, 2011, Elazığ, Turkey. 2011. p. 266-271. [Link]
Pankaj M, Malipatil AS. Experimental investigation of pressure drop & heat transfer coefficient for aluminium metal foams. IOSR Journal of Mechanical and Civil Engineering. 2016;13(5):33-38. [Link] [DOI:10.9790/1684-1305073338]
Le Bars M, Grae Worster M. Interfacial conditions between a pure fluid and a porous medium: Implications for binary alloy solidification. Journal of Fluid Mechanics. 2006;550:149-173. [Link] [DOI:10.1017/S0022112005007998]
Hajipour M. Dynamical modeling of nanofluid flow and heat transfer in porous media fractures. 25th Annual International Engineering Conference of Iran, 2-4 May, 2017, Tehran, Iran. Tehran: Iranian Mechanical Engineers Association; 2017. p. 989-990. [Persian] [Link]
Zhong W, Xu K, Li X, Liao Y, Tao G, Kagawa T. Determination of pressure drop for air flow through sintered metal porous media using a modified Ergun equation. Advanced Powder Technology. 2016;27(4):1134-1140. [Link] [DOI:10.1016/j.apt.2016.03.024]
Yang C, Nakayama A. A synthesis of tortuosity and dispersion in effective thermal conductivity of porous media. International Journal of Heat and Mass Transfer. 2010;53(15-16):3222-3230. [Link] [DOI:10.1016/j.ijheatmasstransfer.2010.03.004]
Diersch HJG. FEFLOW: Finite element modeling of flow, mass and heat transport in porous and fractured media. 1st Edition. Berlin: Springer Science & Business Media; 2013. [Link]
Collings RE. Flow of fluid through porous material. 3rd Edition. Florida: Petroleum publishing; 1961. [Link]
Huang PC, Vafai K. Analysis of flow and heat transfer over an external boundary covered with a porous substrate. Journal of Heat Transfer. 1994;116(3):768-771. [Link] [DOI:10.1115/1.2910937]
Dushin VR, Nikitin VF, Legros JC, Silnikov MV. Mathematical modeling of flows in porous media. WSEAS Transactions on Fluid Mechanics. 2014;9:116-130. [Link]
Nakayama A, Shenoy AV. Non-darcy forced convective heat transfer in a channel embedded in a non-Newtonian inelastic fluid-saturated porous medium. The Canadian Journal of Chemical Engineering. 1993;71(1):168-173. [Link] [DOI:10.1002/cjce.5450710122]
Cummins BM, Chinthapatla R, Ligler FS, Walker GM. Time-dependent model for fluid flow in porous materials with multiple pore sizes. Analytical Chemistry. 2017;89(8):4377-4381. [Link] [DOI:10.1021/acs.analchem.6b04717]