مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

روش ترکیبی هوشمند جدید برای عیب‌یابی یاتاقان بر پایه بهبود روش انتخاب ویژگی ارزیابی جبران فاصله و ماشین بردار پشتیبان

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه دینامیک، کنترل و ارتعاشات، دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران
چکیده
در این مقاله، یک روش جدید برای عیب‌یابی یاتاقان‌ها در سرعت دورانی‌های مختلف ارایه شده است. سیگنال‌های ارتعاشی در چهار حالت سالم، رینگ داخلی معیوب، رینگ خارجی معیوب و المان ساچمه معیوب جمع‌آوری شده‌اند. ابتدا ۲۲ ویژگی آماری در حوزه‌ زمان و ۴ ویژگی در حوزه فرکانس از سیگنال اصلی، ۳ سطح تجزیه حاصل از تبدیل بسته‌ای موجک (WPD) و ۵ مولفه اول حاصل از تجزیه مود تجربی (EMD) استخراج شده‌اند و در نهایت، بردار ویژگی برای هر نمونه سیگنال دارای ۴۲۴ ویژگی است. ماتریس ویژگی با ابعاد بزرگ ممکن است شامل ویژگی‌های غیرحساس به عیب باشد. از این رو در این مطالعه از روش انتخاب ویژگی ارزیابی جبران فاصله (CDET) برای انتخاب ویژگی‌های بهینه استفاده شده است. سپس، از ویژگی‌های منتخب به‌عنوان ورودی طبقه‌بندی‌کننده‌ ماشین بردار پشتیبان (SVM) برای پیش‌بینی وضعیت یاتاقان استفاده شده است. در روش CDET، شاخص آستانه‌ای وجود دارد که نقش تعیین‌کننده‌ای در انتخاب ویژگی‌های مطلوب ایفا می‌نماید. همچنین، روش SVM دارای پارامترهایی است که لازم است حین عیب‌یابی تنظیم شوند. از این رو در این مطالعه از الگوریتم بهینه‌سازی ازدحام ذرات (PSO) برای تعیین مقادیر بهینه شاخص آستانه در روش CDET و پارامترهای بهینه SVM استفاده شده است، به‌طوری که خطای پیش‌بینی شرایط یاتاقان و تعداد ویژگی‌های منتخب کمینه شوند. نتایج به‌دست‌آمده در این مقاله نشان می‌دهد که ویژگی‌های انتخاب‌شده به‌خوبی قادر به تفکیک شرایط مختلف یاتاقان در سرعت‌های مختلف هستند. مقایسه نتایج این مقاله با دیگر روش‌های عیب‌یابی، دلالت بر توانمندی روش پیشنهادی می‌کند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

A New Hybrid Intelligent Technique Based on Improving the Compensation Distance Evaluation Technique and Support Vector Machine for Bearing Fault Diagnosis

نویسندگان English

S. Nezamivand Chegini
A. Bagheri
F. Najafi
Dynamic, Control & Vibration Department, Mechanical Engineering Faculty, University of Guilan, Rasht, Iran
چکیده English

In this paper, a new hybrid intelligent method is presented for detecting the bearing faults in the various rotating speeds. The vibration signals are collected in four conditions, including the normal state, the faulty inner race, the faulty outer race, and the faulty bearing element. Firstly, twenty-two statistical features in the time domain and four frequency features, three Wavelet packet decomposition (WPD), and the first five intrinsic mode functions obtained by the empirical mode decomposition (EMD) are extracted from the original signal; finally, the feature vector for each signal sample has 424 features. However, in the high dimensional feature matrix, there may exist the insensitive features to the presence of defects. Therefore, in this study, the compensation distance evaluation technique (CDET) is used to select the optimal features. Then, the selected features are used as the inputs of the support vector machine (SVM) classifier to diagnose the bearing conditions. In the CDET method, there is a threshold indicator that plays a decisive role in choosing the desired attributes. Also, the SVM method has some parameters that need to be set during the fault detection process. Therefore, the particle swarm optimization (PSO) algorithm is used to determine the optimal threshold in the CDET method and the optimal SVM parameters, so that the prediction error of the bearing conditions and the number of the selected features are minimized. The obtained results demonstrate that the selected features are well able to differentiate between different bearing conditions at various speeds. Comparing the results of this paper with other fault detection methods indicates the ability of the proposed method.



کلیدواژه‌ها English

Bearing Fault Diagnosis
Feature Extraction
Feature selection
Support vector machine
Particle Swarm Optimization
Lei Y, Zuo MJ. Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs. Measurement Science and Technology. 2009;20(12):125701. [Link] [DOI:10.1088/0957-0233/20/12/125701]
Jin Sh, Kim JS, Lee SK. Sensitive method for detecting tooth faults in gearboxes based on wavelet denoising and empirical mode decomposition. Journal of Mechanical Science and Technology. 2015;29(8):3165-3173. [Link] [DOI:10.1007/s12206-015-0715-8]
Li Y, Xu M, Wei Y, Huang W. An improvement EMD method based on the optimized rational Hermite interpolation approach and its application to gear fault diagnosis. Measurement. 2015;63:330-345. [Link] [DOI:10.1016/j.measurement.2014.12.021]
Guo T, Deng Z. An improved EMD method based on the multi-objective optimization and its application to fault feature extraction of rolling bearing. Applied Acoustics. 2017;127:46-62. [Link] [DOI:10.1016/j.apacoust.2017.05.018]
Nguyen P, Kang M, Kim JM, Ahn BH, Ha JM, Choi BK. Robust condition monitoring of rolling element bearings using de-noising and envelope analysis with signal decomposition techniques. Expert Systems with Applications. 2015;42(22):9024-9032. [Link] [DOI:10.1016/j.eswa.2015.07.064]
Bordoloi DJ, Tiwari R. Support vector machine based optimization of multi-fault classification of gears with evolutionary algorithms from time-frequency vibration data. Measurement. 2014;55:1-14. [Link] [DOI:10.1016/j.measurement.2014.04.024]
Bordoloi DJ, Tiwari R. Optimum multi-fault classification of gears with integration of evolutionary and SVM algorithms. Mechanism and Machine Theory. 2014;73:49-60. [Link] [DOI:10.1016/j.mechmachtheory.2013.10.006]
Bordoloi DJ, Tiwari R. Optimisation of SVM methodology for multiple fault taxonomy of rolling bearings from acceleration records. In: Pennacchi P, editor. Proceedings of the 9th IFToMM international conference on rotor dynamics. Cham: Springer; 2015. [Link] [DOI:10.1007/978-3-319-06590-8_43]
Tabrizi A, Garibaldi L, Fasana A, Marchesiello S. Early damage detection of roller bearings using wavelet packet decomposition, ensemble empirical mode decomposition and support vector machine. Meccanica. 2015;50(3):865-874. [Link] [DOI:10.1007/s11012-014-9968-z]
Lei Y, He Z, Zi Y, Chen X. New clustering algorithm-based fault diagnosis using compensation distance evaluation technique. Mechanical Systems and Signal Processing. 2008;22(2):419-435. [Link] [DOI:10.1016/j.ymssp.2007.07.013]
Yang BS, Han T, An JL. ART-KOHONEN neural network for fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing. 2004;18(3):645-657. [Link] [DOI:10.1016/S0888-3270(03)00073-6]
Fatima S, Mohanty AR, Naikan VNA. Multiple fault classification using support vector machine in a machinery fault simulator. In: Sinha JK, editor. Vibration engineering and technology of machinery: Proceedings of VETOMAC X 2014, held at the University of Manchester, UK, September 9-11, 2014. Cham: Springer; 2015. pp. 1021-1031. [Link] [DOI:10.1007/978-3-319-09918-7_90]
Dong Sh, Sun D, Tang B, Gao Z, Yu W, Xia M. A fault diagnosis method for rotating machinery based on PCA and Morlet kernel SVM. Mathematical Problems in Engineering. 2014;2014(10):293878. [Link] [DOI:10.1155/2014/293878]
Yang CY, Wu TY. Diagnostics of gear deterioration using EEMD approach and PCA process. Measurement. 2015;61:75-87. [Link] [DOI:10.1016/j.measurement.2014.10.026]
Ziani R, Felkaoui A, Zegadi R. Bearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized Fisher's criterion. Journal of Intelligent Manufacturing. 2017;28(2):405-417. [Link] [DOI:10.1007/s10845-014-0987-3]
Zhang X, Zhang Q, Chen M, Sun Y, Qin X, Li H. A two-stage feature selection and intelligent fault diagnosis method for rotating machinery using hybrid filter and wrapper method. Neurocomputing. 2018;275:2426-2439. [Link] [DOI:10.1016/j.neucom.2017.11.016]
Yin H, Qiao J, Fu P, Xia XY. Face feature selection with binary particle swarm optimization and support vector machine. Journal of Information Hiding and Multimedia Signal Processing. 2014;5(4):731-739. [Link]
Case Western Reserve University. Bearing data center [Internet]. Cleveland: Case Western Reserve University; 2016 [cited 2017 Sep 5]. Available from: http://csegroups.case.edu/bearingdatacenter/home [Link]
Tabrizi AA, Al-Bugharbee H, Trendafilova I, Garibaldi L. A cointegration-based monitoring method for rolling bearings working in time-varying operational conditions. Meccanica. 2017;52(4-5):1201-1217. [Link] [DOI:10.1007/s11012-016-0451-x]
Rafiee J, Arvani F, Harifi A, Sadeghi MH. Intelligent condition monitoring of a gearbox using artificial neural network. Mechanical Systems and Signal Processing. 2007;21(4):1746-1754. [Link] [DOI:10.1016/j.ymssp.2006.08.005]
Nezamivand Chegini S, Bagheri A, Najafi F. PSOSCALF: A new hybrid PSO based on Sine Cosine Algorithm and Levy flight for solving optimization problems. Applied Soft Computing. 2018;73:697-726. [Link] [DOI:10.1016/j.asoc.2018.09.019]