مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مدل‌سازی عددی هم‌زمان انتقال حرارت و میدان مغناطیسی در کوره ذوب القایی تحت خلا

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران
چکیده
در این مقاله به بررسی عددی انتقال حرارت و میدان مغناطیسی در یک کوره ذوب القایی خلا پرداخته‌ شده است. برای حل معادلات گرمایش القایی از کوپله‌شدن انتقال حرارت و میدان مغناطیسی به روش المان محدود استفاده ‌شده و با استفاده از یک هندسه صنعتی، مدل کوره القایی شبیه‌سازی شده است. مطالعات انجام‌شده نشان می‌دهد که تاثیر شکل هندسی بوته و سیم‌پیچ، بر مدت‌زمان رسیدن به دمای ذوب به‌طور کامل بررسی نشده و مطالعات عمیق‌تری نیاز است. سعی در این است با بهبود هندسه کوره القایی، در مدت‌زمان کمتری آلومینیوم در کوره ذوب شود. تاثیر نسبت قطر به ارتفاع بوته (در حجم ثابت نمونه) بر مدت‌زمان رسیدن به نقطه ذوب در کوره القایی مورد بررسی قرار گرفته است. با کاهش نسبت قطر به ارتفاع، دما در زمان کوتاه‌تری به نقطه ذوب می‌رسد. نتایج نشان می‌دهد که به‌ازای نسبت قطر به ارتفاع کمتر از ۰/۴ تغییر قابل ملاحظه‌ای در دمای میانگین حاصل نخواهد شد. با کاهش ۱۰درصدی فاصله بین سیم‌پیچ‌ها، میانگین دمای ماده افزایش ‌یافته است. با ثابت درنظرگرفتن چگالی جریان سیم‌پیچ و جریان القاشده در ماده گرم‌شونده، اثرات تعداد حلقه سیم‌پیچ القایی بر توزیع دما و شار مغناطیسی نیز مورد بررسی قرار گرفته است و به همین روش صحت مدل‌سازی با مباحث گرمایش القایی مقایسه شده است. تاثیر فرکانس بر دما در نسبت‌های مختلف طول سیم‌پیچ مورد تحقیق قرار گرفته و نتایج نشان می‌دهد افزایش ۴برابری فرکانس موجب افزایش ۱/۷برابری دمای میانگین در قطعه کاری می‌شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Simultaneous Numerical Modelling of Heat Transfer and Magnetic Fields in a Vacuum Induction Furnace

نویسندگان English

S. Ghorbanzadeh
M. Nazari
M.M. Shahmardan
A. Hasannia
M. Nazari
Mechanical Engineering Faculty, Shahrood University of Technology, Shahrood, Iran
چکیده English

In this paper, heat transfer and magnetic fields in a vacuum induction melting furnace have been studied numerically. To solve the coupled equations of thermal and magnetic induction heating, the finite element method has been used. An induction furnace model is simulated using an industrial geometry. The studies indicate that the effect of the geometry of the crucible and the coil on the melting time has not been thoroughly investigated and requires more in-depth studies. It is attempted to improve the shape of the induction furnace, so that in less time aluminum is melted in a small scale furnace. The effect of the diameter-to-height ratio of the crucible on the duration of melting has been investigated. By decreasing the diameter-to-height ratio, the temperature reaches melting temperature in a shorter time. The results show that for the diameter-to-height ratio of less than 0.4, there will not be a significant change at the average temperature. 10% reduction in the distance between the coils leads to an increase in the average temperature of the working material inside the furnace. With considering the constant density of the coil current and the constant induced current in the heated material, the effects of the number of coil turns on the temperature distribution and magnetic flux are investigated. In this way, the accuracy of the model is also checked by induction heating concepts. The effect of frequency on temperature has been investigated in different coil lengths. The results show that an increase of 4 times in the frequency caused an increase of 1.7 times in the average temperature.

کلیدواژه‌ها English

Induction heating
Electromagnetics
Numerical solution
Furnace
Yaohua Y, Chen R, Guo J, Ding H, Su Y. Experimental and numerical investigation on mass transfer induced by electromagnetic field in cold crucible used for directional solidification. International Journal of Heat and Mass Transfer. 2017;114:297-306. [Link] [DOI:10.1016/j.ijheatmasstransfer.2017.06.039]
Fabbri M, Forzan M, Lupi S, Morandi A, Ribani PL. Experimental and numerical analysis of DC induction heating of aluminum billets. IEEE Transactions on Magnetics. 2009;45(1):192-200. [Link] [DOI:10.1109/TMAG.2008.2005794]
Choudhury A, Blum M. Economical production of titanium-aluminide automotive valves using cold wall induction melting and centrifugal casting in a permanent mold. Vacuum. 1996;47(6-8):829-831. [Link] [DOI:10.1016/0042-207X(96)00076-0]
El-Mashad HM, Zhongli Pan. Application of induction heating in food processing and cooking. Food Engineering Reviews. 2017;9(2):82-90. [Link] [DOI:10.1007/s12393-016-9156-0]
Ocilka M, KOVÁČ D. Simulation model of induction heating in Comsol multiphysics. Acta Electrotechnica et Informatica. 2015;15(1):29-33. [Link] [DOI:10.15546/aeei-2015-0005]
Leinhard IV JH. A heat transfer textbook. 4th Edition. Cambridge: Phlogiston Press; 2013. [Link]
Barragán LA, Navarro D, Acero J, Urriza I, Burdío JM. FPGA implementation of a switching frequency modulation circuit for EMI reduction in resonant inverters for induction heating appliances. IEEE Transactions on Industrial Electronics. 2008;55(1):11-20. [Link] [DOI:10.1109/TIE.2007.896129]
Semiatin SL. Elements of induction heating: Design, control, and applications. 2nd Edition. Zinn S, editor. Metals Park: ASM International; 1988. [Link]
Rudnev VI, Cook RL, Loveless DL, Black MR. Induction heat treatment: Basic principles, computation, coil construction, and design considerations. In: Totten GE, editor. Steel heat treatment: Equipment and process design. 2nd Edition. Boca Raton: CRC Press; 2006. p. 277. [Link]
Drobenko B, Hachkevych O, Kournyts'kyi T. A mathematical simulation of high temperature induction heating of electroconductive solids. International Journal of Heat and Mass Transfer. 2007;50(3-4):616-624. [Link] [DOI:10.1016/j.ijheatmasstransfer.2006.07.013]
Bay F, Labbé V, Favennec Y, Chenot JL. A numerical model for induction heating processes coupling electromagnetism and thermomechanics. International Journal for Numerical Methods in Engineering. 2003;58(6):839-867. [Link] [DOI:10.1002/nme.796]
Marchand Ch, Foggia A. 2D finite element program for magnetic induction heating. IEEE Transactions on Magnetics. 1983;19(6):2647-2649. [Link] [DOI:10.1109/TMAG.1983.1062807]
Kurose H, Miyagi D, Takahashi N, Uchida N, Kawanaka K. 3-D eddy current analysis of induction heating apparatus considering heat emission, heat conduction, and temperature dependence of magnetic characteristics. IEEE Transactions on Magnetics. 2009;45(3):1847-1850. [Link] [DOI:10.1109/TMAG.2009.2012829]
Huang MS, Huang YL. Effect of multi-layered induction coils on efficiency and uniformity of surface heating. International Journal of Heat and Mass Transfer. 2010;53(11-12):2414-2423. [Link] [DOI:10.1016/j.ijheatmasstransfer.2010.01.042]
Piotr B, Smolka J, Golak S, Przyłucki R, Palacz M, Siwiec G, et al. Numerical and experimental investigation of heat transfer process in electromagnetically driven flow within a vacuum induction furnace. Applied Thermal Engineering. 2017;124:1003-1013. [Link] [DOI:10.1016/j.applthermaleng.2017.06.099]
Labridis D, Dokopoulos P. Calculation of eddy current losses in nonlinear ferromagnetic materials. IEEE Transactions on Magnetics. 1989;25(3):2665-2669. [Link] [DOI:10.1109/20.24506]
Kranjc M, Zupanic A, Miklavcic D, Jarm T. Numerical analysis and thermographic investigation of induction heating. International Journal of Heat and Mass Transfer. 2010;53(17-18):3585-3591. [Link] [DOI:10.1016/j.ijheatmasstransfer.2010.04.030]
Davies J, Simpson P. Induction heating handbook. New York: McGraw-Hill; 1979. [Link]