مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

برخورد سرعت بالا روی پانل‌های ساندویچی با هسته فومی مدرج و رویه آلومینیومی: بررسی عددی و تجربی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه ملایر، ملایر، ایران
2 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه بوعلی‌سینا، همدان، ایران
چکیده
در این تحقیق، رفتار هدف‌های ساندویچی با رویه آلومینیومی و هسته فوم پلی‌یورتان مدرج با چگالی‌های مختلف بررسی شده است. تاثیر تغییرات درجه‌بندی‌شده چگالی فوم هسته و اثر ترتیب و توالی لایه‌های فومی با چگالی‌های مختلف، در جذب انرژی و حد بالستیک سازه‌های ساندویچی که در سرعت بالا (۱۶۰ تا ۳۰۰متر بر ثانیه) تحت ضربه پرتابه‌های استوانه‌ای سر نیم‌کروی قرار می‌گیرند، به روش تجربی و عددی مورد مطالعه قرار گرفته است. به‌طور کلی پنج نوع پانل متفاوت از نظر چیدمان لایه‌ها در ابعاد ۱۰۰×۱۰۰میلی‌متر مربع و با تعداد شش عدد از هر نوع تهیه شد. در مجموع تعداد نمونه‌های تهیه‌شده برابر ۳۰ نمونه شد. شبیه‌سازی‌های عددی با استفاده از نرم‌افزار ال‌اس‌داینا انجام شده است. نتایج این تحقیق نشان داد که اولاً تطابق خوبی بین نتایج تجربی و شبیه‌سازی برقرار است و ثانیاً نتایج تجربی و شبیه‌سازی نشان داد که حد بالستیک و جذب انرژی سازه‌های ساندویچی با جرم یکسان با هسته فومی مدرج در حالتی که لایه فومی با چگالی کمتر در سمت ضربه قرار گیرد، برای پانل‌های سه لایه‌ای به‌ترتیب ۵/۵ و ۱۱/۵% بیشتر از هسته فومی تک‌لایه با چگالی میانگین است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

High Velocity Impact on Sandwich Panels with Graded Foam-cored and Aluminum Face-sheet: Numerical and Experimental Assessment

نویسندگان English

M. Kazemi 1
A. Alavi nia 2
1 Mechanical Engineering Department, Engineering Faculty, Malayer University, Malayer, Iran
2 Mechanical Engineering Department, Engineering Faculty, Bu-Ali Sina University, Hamedan, Iran
چکیده English

In this research, the ballistic strength of sandwich structures with aluminum face-sheet and polyurethane foam cores of various densities have been investigated. The effect of graded changes in the density of foam core and arrangement of foamed layers with different densities on the absorption of energy and the ballistic limit of sandwich structures at high velocity (160-300 m/s) under the impact of semi-spherical nosed cylindrical projectiles were investigated. Generally, five different types of panels were designed in dimensions of 100×100 mm2, 6 in each. In total, the prepared samples were 30. Numerical simulations were performed, using Ls-dyna software. The results of this study showed that, firstly, there is good agreement between the experimental and simulation results and, secondly, the experimental and simulation results showed that the ballistic limit and energy absorption of sandwich structures of the same mass with the graded foam core in the case a less density foam layer is on the side of the impact for the three-layer panels is, respectively, 5.5% and 11.5% higher than the panel with single-layer foam core and average density.

کلیدواژه‌ها English

Sandwich structures
ballistic limit
simulation
Graded Foam Core
Dean J, S-Fallah A, Brown PM, Louca LA, Clyne TW. Energy absorption during projectile perforation of lightweight sandwich panels with metallic fibre cores. Composite Structures. 2011;93(3):1089-1095. [Link] [DOI:10.1016/j.compstruct.2010.09.019]
Nasirzadeh R, Sabet AR. Study of foam density variations in composite sandwich panels under high velocity impact loading. International Journal of Impact Engineering. 2014;63:129-139. [Link] [DOI:10.1016/j.ijimpeng.2013.08.009]
Belingardi G, Cavatorta MP, Duella R. Material characterization of a composite-foam sandwich for the front structure of a high speed train. Composite Structures. 2003;61(1-2):13-25. [Link] [DOI:10.1016/S0263-8223(03)00028-X]
Cho JU, Hong SJ, Lee SK, Cho Ch. Impact fracture behavior at the material of aluminum foam. Materials Science and Engineering A. 2012;539:250-258. [Link] [DOI:10.1016/j.msea.2012.01.091]
Shen J, Lu G, Ruan D, Seah CC. Lateral plastic collapse of sandwich tubes with metal foam core. International Journal of Mechanical Sciences. 2015;91:99-109. [Link] [DOI:10.1016/j.ijmecsci.2013.11.016]
Li Sh, Wang Z, Wu G, Zhao L, Li X. Dynamic response of sandwich spherical shell with graded metallic foam cores subjected to blast loading. Composites Part A Applied Science and Manufacturing. 2014;56:262-271. [Link] [DOI:10.1016/j.compositesa.2013.10.019]
Goldsmith W, Sackman JL. An experimental study of energy absorption in impact on sandwich plates. International Journal of Impact Engineering. 1992;12(2):241-262. [Link] [DOI:10.1016/0734-743X(92)90447-2]
Reyes A, Hopperstad OS, Berstad T, Hanssen AG, Langseth M. Constitutive modeling of aluminum foam including fracture and statistical variation of density. European Journal of Mechanics A Solids. 2003;22(6):815-835. [Link] [DOI:10.1016/j.euromechsol.2003.08.001]
Mines RAW, Worrall CM, Gibson AG. Low velocity perforation behaviour of polymer composite sandwich panels. International Journal of Impact Engineering. 1998;21(10):855-879. [Link] [DOI:10.1016/S0734-743X(98)00037-2]
Roach AM, Evans KE, Jones N. The penetration energy of sandwich panel elements under static and dynamic loading. Part I. Composite Structures. 1998;42(2):119-134.
https://doi.org/10.1016/S0263-8223(98)00062-2 [Link] [DOI:10.1016/S0263-8223(98)00061-0]
Roach AM, Jones N, Evans KE. The penetration energy of sandwich panel elements under static and dynamic loading. Part II. Composite Structures. 1998;42(2):135-152.
https://doi.org/10.1016/S0263-8223(98)00062-2 [Link] [DOI:10.1016/S0263-8223(98)00061-0]
Alavi Nia A, Kazemi M. Analytical study of high velocity impact on sandwich panels with foam core and aluminum face-sheets. Modares Mechanical Engineering. 2015;15(6):231-239. [Persian] [Link]
Hou W, Zhu F, Lu G, Fang DN. Ballistic impact experiments of metallic sandwich panels with aluminium foam core. International Journal of Impact Engineering. 2010;37(10):1045-1055. [Link] [DOI:10.1016/j.ijimpeng.2010.03.006]
Cao L, Lin Y, Lu F, Chen R, Zhang Z, Li Y. Experimental study on the shock absorption performance of combined aluminium honeycombs under impact loading. Shock and Vibration. 2015;2015:689546. [Link]
Ghalami-Choobar M, Sadighi M. Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber-metal laminates skins and polyurethane core. Aerospace Science and Technology. 2014;32(1):142-152. [Link] [DOI:10.1016/j.ast.2013.12.005]
Ziya Shamami M, Khodarahmi H, Vahedi K, Pol MH. Experimental and numerical investigation of a blunt rigid projectile penetrating into a sandwich panel having aluminum foam core. Journal of Modares Mechanical Engineering. 2013;13(5):1-13. [Persian] [Link]
Aslani A, Zamani Ashani J. A numerical analysis on effect of impedance and thickness of various layers on deflection of target plate in layered armor systems under explosive loading. Jouranl of Science and Technology of Composites. 2014;1(2):11-20. [Persian] [Link]
Alavi Nia A, Ranjbarzadeh H, Kazemi M. An empirical study on ballistic resistance of sandwich targets with aluminum facesheets and composite core. Latin American Journal of Solids and Structures. 2017;14(6):1085-1105. [Link] [DOI:10.1590/1679-78253390]
Feli S, Namdari Pour MH. An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact. Composites Part B Engineering. 2012;43(5):2439-2447. [Link] [DOI:10.1016/j.compositesb.2011.11.028]
Alavi Nia A, Mokari S, Zakizadeh M, Kazemi M. Experimental and numerical investigations of the effect of cellular wired core on the ballistic resistance of sandwich structures. Aerospace Science and Technology. 2017;70:445-452. [Link] [DOI:10.1016/j.ast.2017.08.015]
Su B, Zhou Z, Zhang J, Wang Z, Shu X, Li Z. A numerical study on the impact behavior of foam-cored cylindrical sandwich shells subjected to normal/oblique impact. Latin American Journal of Solids and Structures. 2015;12(11):2045-2060. [Link] [DOI:10.1590/1679-78251742]
Ouellet S, Cronin D, Worswick M. Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions. Polymer Testing. 2006;25(6):731-743. [Link] [DOI:10.1016/j.polymertesting.2006.05.005]
Linul E, Marsavina L, Voiconi T, Sadowski T. Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression. Journal of Physics Conference Series. 2013;451(1):012002. [Link] [DOI:10.1088/1742-6596/451/1/012002]
García-Castillo SK, Buitrago BL, Barbero E. Behavior of sandwich structures and spaced plates subjected to high-velocity impacts. Polymer Composites. 2011;32(2):290-296. [Link] [DOI:10.1002/pc.21047]
Liu XR, Tian XG, Lu TJ, Liang B. Sandwich plates with functionally graded metallic foam cores subjected to air blast loading. International Journal of Mechanical Sciences. 2014;84:61-72. [Link] [DOI:10.1016/j.ijmecsci.2014.03.021]