مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

کنترل فازی برای تزریق دارو در شیمی‌درمانی تومورهای سرطانی

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشکده مهندسی مکانیک، دانشگاه شیراز، شیراز، ایران
چکیده
روش‌های مختلفی برای کنترل تزریق داروی شیمی‌درمانی برای درمان تومورهای سرطانی مورد مطالعه قرار گرفته‌اند. هدف اصلی از کنترل ،کم‌کردن سریع سلول‌های سرطانی و در عین حال رساندن کمترین آسیب به بافت‌های سالم بدن است. همچنین در انتهای درمان، میزان غلظت داروهای باقیمانده در بدن بیمار تا حد امکان باید کم باشد. الگوریتم‌های کنترلی مختلفی بر مدل‌های دینامیک با درجات متنوع اعمال شده‌اند. در این مقاله یک مدل دینامیک به‌روز سرطان با پنج معادله دیفرانسیل با درنظرگرفتن سلول‌های سالم، دیواره رگ، سلول‌های سرطانی و میزان دو داروی شیمی‌درمانی و آنتی آنژیوژنیک باقیمانده در بدن به‌عنوان متغیرهای فضای حالت و نرخ تزریق دو دارو به‌عنوان سیگنال کنترلی در نظر گرفته شده است. بعد از بررسی مدل ریاضی سیستم، کنترل این بیماری به‌وسیله کنترلر فازی با تعریف قوانین به‌همراه فازی‌ساز و فازی‌زدا، یکی از سیگنال‌های کنترلی (نرخ داروی شیمی‌درمانی) کنترل شده است. بدین صورت که میزان تراکم سلول‌های سالم و سرطانی به‌عنوان ورودی کنترلر فازی و نرخ تزریق داروی شیمی‌درمانی، خروجی آن است. نتایج حاصل از شبیه‌سازی نشان می‌دهد که در روزهای آخر درمان، سلول‌های سرطانی روندی نزولی دارد و سلول‌های سالم و دیواره رگ نیز به مقدار حالت بدون بیماری میل می‌کنند. جواب‌های حاصل از کنترلر فازی با حالت بدون کنترلر و همچنین با داده‌های آزمایشگاهی موجود مقایسه شده است. نتایج مشخص می‌کند که سیستم محدوده‌های مجاز را رعایت کرده که بیانگر معتبربودن جواب حاصل از کنترلر فازی است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Fuzzy Control for Drug Delivery in Cancerous Tumors Chemotherapy

نویسندگان English

P. Khalili
S. Zolatash
R. Vatankhah
Mechanical Engineering Faculty, Shiraz University, Shiraz, Iran
چکیده English

Different strategies are studied to control chemotherapy delivery in cancerous tumors. The main aim of control is to reduce cancer cells immediately and, at the same time, it is the least harm to the healthy tissue of the body. Besides, at the end of treatment, the amount of drug remaining in the patient's body should be as low as possible. Various control algorithms are applied dynamic models with different orders. In this paper, a model for cancer with five ordinary differential equations by considering normal, endothelial and cancer cells, and the amount of two chemotherapy drugs and anti-angiogenic residues in the body as state space variables and the rate of injection of as a control After discussing the mathematical model of the system, the system is controlled by defining the rules along with and by one of the control signals (rate of chemotherapy drug). This means that the rate of normal and cancerous counts as the input of the fuzzy controller and the amount of chemotherapy drug signal is the output. The simulation results show that in the last days of treatment, cancer cells have a downward trend, and normal and endothelial cells also tend to the healthy state. The solutions of the fuzzy controller are compared with the uncontrolled mode as well as the available experimental data. The results indicate that the system has met the permissible limits, which indicates the validity of the answer from the fuzzy controller.

کلیدواژه‌ها English

Cancerous Tumor
Chemotherapy
Anti-Angiogenic
Fuzzy controller
1- Yang SZ, Tang Y, Zhang Y, Chen WG, Sun J, Chu TW. Prognostic factors and comparison of conservative treatment, percutaneous vertebroplasty, and open surgery in the treatment of spinal metastases from lung cancer. World Neurosurgery. 2017;108:163-175. [Link] [DOI:10.1016/j.wneu.2017.08.130]
Fermé Ch, Thomas J, Brice P, Casasnovas O, Vranovsky A, Bologna S, et al. ABVD or BEACOPPbaseline along with involved-field radiotherapy in early-stage Hodgkin Lymphoma with risk factors: Results of the European organisation for research and treatment of cancer (EORTC)-groupe d'Étude des lymphomes de l'Adulte (GELA) H9-U intergroup randomised trial. European Journal of Cancer. 2017;81:45-55. [Link] [DOI:10.1016/j.ejca.2017.05.005]
Schild SE, Hillman SL, Tan AD, Ross HJ, McGinnis WL, Garces YA, et al. North central cancer treatment group. long-term results of a trial of concurrent chemotherapy and escalating doses of radiation for unresectable non-small cell lung cancer: NCCTG N0028 (Alliance). Journal of Thoracic Oncology. 2017;12(4):697-703. [Link] [DOI:10.1016/j.jtho.2016.12.021]
Skipper HE, Schabel FM, Wilcox WS. Experimental evaluation of potential anticancer agents XIII, on the criteria and kinetics associated with"curability" of experimental leukemria. Cancer Chemotherapy Report. 1964;35:1-111. [Link]
Kohandel M, Sivaloganathan S, Oza A. Mathematical modeling of ovarian cancer treatments: Sequencing of surgery and chemotherapy. Journal of Theoretical Biology. 2006;242(1):62-68. [Link] [DOI:10.1016/j.jtbi.2006.02.001]
Simon R, Norton L. The Norton-Simon hypothesis: Designing more effective and less toxic chemotherapeutic regimens. Nature Clinical Practice Oncology. 2006;3(8):406-407. [Link] [DOI:10.1038/ncponc0560]
Norton L, Simon R, Brereton HD, Bogden AE. Predicting the course of Gompertzian growth. Nature. 1976;264(5586):542-545. [Link] [DOI:10.1038/264542a0]
De Pillis LG, Radunskaya A. The dynamics of an optimally controlled tumor model: A case study. Mathematical and Computer Modelling. 2003;37(11):1221-1244. [Link] [DOI:10.1016/S0895-7177(03)00133-X]
Ku-Carrillo RA, Delgadillo SE, Chen-Charpentier BM. A mathematical model for the effect of obesity on cancer growth and on the immune system response. Applied Mathematical Modelling. 2016;40(7-8):4908-4920. [Link] [DOI:10.1016/j.apm.2015.12.018]
Anderson ARA, Chaplain MAJ. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bulletin of Mathematical Biology. 1998;60(5):857-899. [Link] [DOI:10.1006/bulm.1998.0042]
Pinho STR, Bacelar FS, Andrade RFS, Freedman HI. A mathematical model for the effect of anti-angiogenic therapy in the treatment of cancer tumours by chemotherapy. Nonlinear Analysis Real World Applications. 2013;14(1):815-828. [Link] [DOI:10.1016/j.nonrwa.2012.07.034]
Ku-Carrillo RA, Delgadillo-Aleman SE, Chen-Charpentier BM. Effects of the obesity on optimal control schedules of chemotherapy on a cancerous tumor. Journal of Computational and Applied Mathematics. 2017;309:603-610. [Link] [DOI:10.1016/j.cam.2016.05.010]
Khalili P, Vatankhah R, Taghvaei S. Optimal sliding mode control of drug delivery in cancerous tumour chemotherapy considering the obesity effects. IET Systems Biology. 2018;12(4):185-189. [Link] [DOI:10.1049/iet-syb.2017.0094]
Nasiri H, Akbarzadeh Kalat A. Adaptive fuzzy back-stepping control of drug dosage regimen in cancer treatment. Biomedical Signal Processing and Control. 2018;42:267-276. [Link] [DOI:10.1016/j.bspc.2018.02.001]
El-Garawany AH, Karar ME, El-Brawany MA. Embedded drug delivery controller for cancer chemotherapy under treatment constrains. 2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems & 2017 Intl Conf on New Paradigms in Electronics & Information Technology (PEIT), 5-8 November, 2017, Alexandria, Egypt. Piscataway: IEEE; 2017. [Link]
Wang LX. A course in fuzzy system and control. Upper Saddle River: Prentice Hall PTR; 1997. [Link]
Browder T, Butterfield CE, Kräling BM, Shi B, Marshall B, O'Reilly MS, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Research. 2000;60(7):1878-1886. [Link]