مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تاثیر ضرایب مشتقات پایداری دینامیکی بر طراحی پارامترهای عملکردی عملگر در یک ربات زیر آب

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشکده مهندسی مکانیک، دانشگاه شیراز، شیراز، ایران
چکیده
تعیین یک مدل دینامیکی مناسب برای یک ربات زیر آب، از نظر طراحی سیستم هدایت و کنترل از اهمیت زیادی برخوردار است. به‌منظور طراحی یک سیستم کنترلی موفق برای وسایل زیر آب همواره دانستن ضرایب مشتقات پایداری هیدرودینامیکی وسیله به‌طور کامل و با دقت کافی مورد توجه محققان بوده است. انتخاب عملگر مناسب در سیستم کنترل روی عملکرد کلی سیستم و هزینه‌های پروژه موثر است. معمولاً در طراحی عملگرها تاثیر ضرایب مشتقات پایداری دینامیکی در نظر گرفته نمی‌شود؛ بنابراین در این تحقیق سعی شده است تا میزان اهمیت این ضرایب در طراحی عملگرها بررسی شود. برای این منظور در ابتدا معادلات حرکت یک ربات زیر آب مورد بررسی قرار گرفته است. سپس، استخراج ضرایب هیدرودینامیکی شامل ضرایب استاتیکی و دینامیکی برای یک ربات زیر آب توسط یک کد محاسباتی سریع انجام و پس از آن اثرات ضرایب مشتقات پایداری دینامیکی بر پارامترهای عملکردی دینامیکی وسیله مانند پهنای باند دینامیک سیستم و نقش آن در سیستم کنترل بررسی شد. همچنین در پایان به بررسی انتخاب عملگر مناسب برای ربات زیر آب و مطالعه اثرات فرکانس طبیعی عملگر بر عملکرد سیستم پرداخته شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of Dynamic Stability Derivatives Coefficients on the Design of Operational Parameters of the Actuator in an Underwater Robot

نویسندگان English

M. Mirzaei
H. Taghvaei
School of Mechanical Engineering, Shiraz University, Shiraz, Iran
چکیده English

Determining a dynamic model for an underwater robot is of great importance in design of guidance and control system. Researchers always need a complete knowledge about hydrodynamic stability derivatives coefficients of vehicle with sufficient accuracy to design a successful control system for underwater vehicles. The selection of proper actuator in control system is important on the global performance of the system and the costs of the project. Usually, the effect of dynamic stability derivative coefficients is not considered in the design of actuators; therefore, in the present study, it is tried to investigate the effect of these coefficients in the design of actuators. For this purpose, firstly, the equations of motion for an underwater robot are presented. Then, hydrodynamic coefficients that contains static and dynamic coefficients are determined, using a rapid computational code and, then, the effect of hydrodynamic stability derivatives coefficients on the operational dynamic parameters of vehicle such as the bandwidth of the system dynamics and its role in the control system are considered. Finally, the selection of appropriate actuator for the underwater robot and the effects of natural frequency of actuators on the system performance are studied.

کلیدواژه‌ها English

Dynamic stability derivatives coefficients
Operational parameters of actuator
Underwater robot
Xu F, Zou ZJ, Yin JC, Cao J. Identification modeling of underwater vehicles' nonlinear dynamics based on support vector machines. Ocean Engineering. 2013;67:68-76. [Link] [DOI:10.1016/j.oceaneng.2013.02.006]
Conte G, Scaradozzi D, Mannocchi D, Raspa P, Panebianco L, Screpanti L. Experimental testing of a cooperative ASV-ROV multi-agent system. IFAC-PapersOnLine. 2016;49(23):347-354. [Link] [DOI:10.1016/j.ifacol.2016.10.428]
Ross A, Fossen TI, Johansen TA. Identification of underwater vehicle hydrodynamic coefficients using free decay tests. IFAC Proceedings Volumes. 2004;37(10):363-368. [Link] [DOI:10.1016/S1474-6670(17)31759-7]
Park JY, Kim N, Shin YK. Experimental study on hydrodynamic coefficients for high-incidence-angle maneuver of a submarine. International Journal of Naval Architecture and Ocean Engineering. 2017;9(1):100-113. [Link] [DOI:10.1016/j.ijnaoe.2016.08.003]
Persi E, Petaccia G, Fenocchi A, Manenti S, Ghilardi P, Sibilla S. Hydrodynamic coefficients of yawed cylinders in open-channel flow. Flow Measurement and Instrumentation. 2019;65:288-296. [Link] [DOI:10.1016/j.flowmeasinst.2019.01.006]
Eng YH, Lau WS, Low E, Seet GGL, Chin CS. Estimation of the hydrodynamics coefficients of an ROV using free decay pendulum motion. Engineering Letter. 2008;16(3):329-342. [Link]
Suzuki H, Sakaguchi J, Inoue T, Watanabe Y, Yoshida H. Evaluation of methods to estimate hydrodynamic force coefficients of underwater vehicle based on CFD. IFAC Proceedings Volumes. 2013;46(33):197-202. [Link] [DOI:10.3182/20130918-4-JP-3022.00026]
Praveen PC, Krishnakutty P. Study on the effect of body length on the hydrodynamic performance of an axi-symmetric underwater vehicle. Indian Journal of Geo-Marine Sciences. 2013;42(8):1013-1022. [Link]
Sharma SN, Hirpara RH. An underwater vehicles dynamics in the presence of noise and Fokker-Planck Equations. IFAC Proceedings Volumes. 2014;47(3):8805-8811. [Link] [DOI:10.3182/20140824-6-ZA-1003.00237]
Banazadeh A, Seif MS, Khodaei MJ, Rezaie M. Identification of the equivalent linear dynamics and controller design for an unmanned underwater vehicle. Ocean Engineering. 2017;139:152-168. [Link] [DOI:10.1016/j.oceaneng.2017.04.048]
Ansari U, Bajodah AH. Robust generalized dynamic inversion control of autonomous underwater vehicles. IFAC PapersOnLine. 2017;50(1):10658-65. [Link] [DOI:10.1016/j.ifacol.2017.08.1757]
Larrazabal JM, Peñas SM. Intelligent rudder control of an unmanned surface vessel. Expert Systems with Applications. 2016;55:106-117. [Link] [DOI:10.1016/j.eswa.2016.01.057]
Kenneth KK, Robin SB, Katherine KYL, Lam FY, Robin CWL. A novel actuator for underwater robots. IEEE Journal of Ocean Engineering. 2009;34(3):331-342. [Link] [DOI:10.1109/JOE.2009.2014928]
Yuan J, Chen YQ, Fei S. Analysis of actuator rate limit effects on first-order plus time-delay systems under fractional-order proportional-integral control. IFAC-PapersOnLine. 2018;51(4):37-42. [Link] [DOI:10.1016/j.ifacol.2018.06.022]
McLean D. Automatic flight control systems. New Jersey: Prentice Hall; 1990. pp. 54-60. [Link]
Fossen TI. Guidance and Control of Ocean Vehicles. Hoboken: Wiley. 1994; pp. 231-238. [Link]