مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی کنترل‌کننده وارون‌دینامیک برای یک ماهواره با درنظرگرفتن دینامیک عملگرهای مغناطیسی

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه دینامیک پرواز و کنترل، دانشکده مهندسی هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران
چکیده
در این مقاله برای کنترل یک ماهواره تحریک‌شده با عملگرهای مغناطیسی از کنترل‌کننده‌ غیرخطی وارون‌دینامیک استفاده شده است. از آنجا که پایداری قوانین کنترل خطی در دینامیک‌های غیرخطی در شرایط دور از نقطه تعادل تضمین نشده، لذا لزوم طراحی یک قانون کنترل غیرخطی که پایداری آن کلی است، ضروری به نظر می‌رسد. در این روش طراحی، با تغییر در پارامترهای سیستم، دینامیک غیرخطی سیستم به دینامیک خطی تبدیل می‌شود و ورودی کنترل‌کننده، این تغییر را جبران می‌کند. پایداری سیستم حلقه بسته توسط روش لیاپانوف مورد بررسی و اثبات شد. معادلات دینامیک و سینماتیک ماهواره در حضور گشتاورهای اغتشاشی آیرودینامیک، گرادیان جاذبه، مغناطیسی و تابشی توسعه‌یافته و خطی‌سازی معادلات حرکت حول نقطه تعادل انجام شده است. برای ارزیابی عملکرد کنترل‌کننده وارون‌دینامیک، قوانین کنترل خطی کلاسیک تناسبی- مشتق‌گیر و کنترل‌ بهینه رگولاتور مرتبه دوم خطی طراحی شده و نتایج با آن مقایسه شده است. با مدل‌سازی مدار ماهواره، گشتاورهای اغتشاشی و بردار میدان مغناطیسی زمین محلی، به‌صورت لحظه‌ای و با توجه به وضعیت ماهواره در مدار محاسبه می‌شوند. در انتها پاسخ سیستم با فرض درنظرگرفتن محدوده اشباع برای عملگرهای مغناطیسی نمایش داده شده است. نتایج نمایان‌گر عملکرد بهتر کنترل‌کننده غیرخطی وارون دینامیک در معیار دقت و زمان همگرایی است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Nonlinear Dynamic Inversion Controller Design for a Satellite, Considering the Dynamics of Magnetorquers

نویسندگان English

H. Arefkhani
S.H. Sadati
M. Shahravi
Flight Dynamic & Control Department, Aerospace Engineering Faculty, Malek-Ashtar University, Tehran, Iran
چکیده English

In this paper, a nonlinear inverse dynamic controller is designed for a magnetic actuated satellite. Since the stability of linear control laws in nonlinear dynamics is not guaranteed far from the equilibrium point, a global stabilizing nonlinear control law is necessary. In this method, by changing the system parameters, the nonlinear dynamics of the system is converted to linear dynamics and the input controller compensates the changes. The stability of the closed loop system was, then, investigated and proved by the Lyapunov method. Dynamic and kinematic equations of satellite are also developed in the presence of aerodynamic disturbance, gravity gradient, magnetic and radiation moments, and the linearization of the motion equations is done around the equilibrium point. In order to evaluate the performance of the dynamic inverse controller, the proportional-derivative linear control law and linear quadratic regulator optimal control law are designed and the results are compared. By modeling satellite orbit, the disturbance moments and the local magnetic field vector are calculated instantaneously according to the satellite's position in the orbit. Finally, the system response is presented by considering the saturation range of magnetic actuators. The results show a better performance of the nonlinear dynamic inversion controllers in both accuracy and convergence time.

کلیدواژه‌ها English

Magnetic Attitude Control
Nonlinear Dynamic Inversion Controller
Lyapunov stability
Classical Control
Optimal Control
Ovchinnikov MY, Penkov VI, Ilyin AA, Selivanov SA. Magnetic attitude control systems of the nanosatellite TNS-series. In: Röser HP, Sandau R, Valenzuela A, editors. Small satellites for earth observation: Selected proceedings of the 5th international symposium of the International Academy of Astronautics, Berlin, April 4-8 2005. Berlin: Walter de Gruyter; 2005. pp. 337-344. [Link]
Bolandi H, Ghorbani Vaghei B. Stable supervisory-adaptive controller for spinning satellite using only magnetorquers. IEEE Transactions on Aerospace and Electronic Systems. 2009;45(1):192-208. [Link] [DOI:10.1109/TAES.2009.4805273]
Wisniewski R. Satellite attitude control using only electromagnetic actuation [Dissertation]. Aalborg: Aalborg University; 1997. [Link] [DOI:10.2514/6.1997-3479]
Psiaki ML. Magnetic torquer attitude control via asymptotic periodic linear quadratic regulation. Journal of Guidance Control and Dynamics. 2001;24(2):386-394. [Link] [DOI:10.2514/2.4723]
Liang J, Fullmer R, Chen YQ. Time-optimal magnetic attitude control for small spacecraft. 43rd IEEE Conference on Decision and Control (CDC), 14-17 Dec 2004, Nassau, Bahamas. Piscataway: IEEE; 2004. [Link]
Sivaprakash N, Shanmugam J. Neural network based three axis satellite attitude control using only magnetic torquers. 24th Digital Avionics Systems Conference, 30 Oct - 3 Nov 2005, Washington, DC, USA. Piscataway: IEEE; 2005. [Link]
Krogstad T, Gravdahl JT, Tondel P. Explicit model predictive control of a satellite with magnetic torquers. IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 27-29 June 2005, Limassol, Cyprus. Piscataway: IEEE; 2005. [Link]
Silani E, Lovera M. Magnetic spacecraft attitude control: A survey and some new results. Control Engineering Practice. 2005;13(3):357-371. [Link] [DOI:10.1016/j.conengprac.2003.12.017]
Lovera M, Astolfi A. Global magnetic attitude control of spacecraft in the presence of gravity gradient. IEEE Transactions on Aerospace and Electronic Systems. 2006;42(3):796-805. [Link] [DOI:10.1109/TAES.2006.248214]
Wood M, Chen WH, Fertin D. Model predictive control of low earth orbiting spacecraft with magneto-torquers. IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, 4-6 Oct, 2006, Munich, Germany. Piscataway: IEEE; 2006. [Link] [DOI:10.1109/CACSD-CCA-ISIC.2006.4777100]
Torczynski DM, Amini R, Massioni P. Magnetorquer based attitude control for a nanosatellite testplatform. AIAA Infotech @ Aerospace 2010, 20-22 April 2010, Atlanta, Georgia. Reston VA: AIAA; 2010. [Link] [DOI:10.2514/6.2010-3511]
Reyhanoglu M, Hervas JR. Magnetic attitude control design for small satellites via slowly-varying systems theory. IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 25-28 Oct 2012, Montreal, QC, Canada. Piscataway: IEEE; 2012. [Link] [DOI:10.1109/IECON.2012.6388706]
Oluwatosin AM, Hamam Y, Djouani K. Attitude control of a CubeSat in a circular orbit using magnetic actuators. 2013 Africon, 9-12 Sept 2013, Pointe-Aux-Piments, Mauritius. Piscataway: IEEE; 2013. [Link] [DOI:10.1109/AFRCON.2013.6757619]
Zhou B. Global stabilization of periodic linear systems by bounded controls with applications to spacecraft magnetic attitude control. Automatica. 2015;60:145-154. [Link] [DOI:10.1016/j.automatica.2015.07.003]
Kukreti S, Walker A, Putman P, Cohen K. Genetic algorithm based LQR for attitude control of a magnetically actuated CubeSat. AIAA Infotech @ Aerospace, 5-9 January 2015, Kissimmee, Florida. Reston VA: AIAA; 2015. [Link] [DOI:10.2514/6.2015-0886]
Kou Y, Yuan Q, Li C, Ji Y, Zhang Y. Application constraints of the three-axis stabilization magnetic control method based on LQR. Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), 21-23 July 2016, Harbin, China. Piscataway: IEEE; 2016. [Link] [DOI:10.1109/IMCCC.2016.144]
Yang Y. An efficient algorithm for periodic Riccati equation with periodically time-varying input matrix. Automatica. 2017;78:103-109. [Link] [DOI:10.1016/j.automatica.2016.12.028]
Yang Y. An efficient LQR design for discrete-time linear periodic system based on a novel lifting method. Automatica. 2018;87:383-388. [Link] [DOI:10.1016/j.automatica.2017.10.019]
Cao Y, Chen WH. Variable sampling-time nonlinear model predictive control of satellites using magneto-torquers. Systems Science & Control Engineering an Open Access Journal. 2014;2(1):593-601. [Link] [DOI:10.1080/21642583.2014.956841]
Sofyalı A, Jafarov EM, Wisniewski R. Robust and global attitude stabilization of magnetically actuated spacecraft through sliding mode. Aerospace Science and Technology. 2018;76:91-104. [Link] [DOI:10.1016/j.ast.2018.01.022]
Zanchettin AM, Calloni A, Lovera M. Robust magnetic attitude control of satellites. IEEE ASME Transactions on Mechatronics. 2013;18(4):1259-1268. [Link] [DOI:10.1109/TMECH.2013.2259843]
Wu G, Meng X, Wang F. Improved nonlinear dynamic inversion control for a flexible air-breathing hypersonic vehicle. Aerospace Science and Technology. 2018;78:734-743. [Link] [DOI:10.1016/j.ast.2018.04.036]
Alam M, Celikovsky S. On the internal stability of non-linear dynamic inversion: Application to flight control. IET Control Theory & Applications. 2017;11(12):1849-1861. [Link] [DOI:10.1049/iet-cta.2016.1067]
Lungu M, Lungu R. Adaptive neural network-based satellite attitude control by using the dynamic inversion technique and a VSCMG pyramidal cluster. Complexity. 2019;2019:1645042. [Link] [DOI:10.1155/2019/1645042]
Benenia M, Batatia H, Mora Camino F, Benslama M. Altitude control of a satellite using a feedback linearization. IET Conference on Control and Automation 2013: Uniting Problems and Solutions, 4-5 June 2013, Birmingham, UK. London: IET; 2013. [Link] [DOI:10.1049/cp.2013.0018]
Joshi G, Padhi R. Robust satellite formation flying using dynamic inversion with modified state observer. IEEE International Conference on Control Applications (CCA), 28-30 Aug 2013, Hyderabad, India. Piscataway: IEEE; 2013. [Link] [DOI:10.1109/CCA.2013.6662810]
Mattei G, Carletti A, Di Giamberardino P, Monaco S, Normand-Cyrot D. Adaptive robust redesign of feedback linearization for a satellite with flexible appendage. Proceedings of the 2nd IAA Conference on Dynamics and Control of Space Systems (DYCOSS 2014), 24-26 Mar 2014, Rome, Italy. Springfield VA: American Astronautical Society; 2015. p. 685-697. [Link]
Ansari UZ, Bajodah AH. Spacecraft attitude control using robust generalized dynamic inversion. IEEE Conference on Control Technology and Applications (CCTA), 21-24 Aug 2018, Copenhagen, Denmark. Piscataway: IEEE; 2018. [Link] [DOI:10.1109/CCTA.2018.8511482]
Zipfel PH. Modeling and simulation of aerospace vehicle dynamics. Reston VA: AIAA Education; 2003. pp. 5-6. [Link]
Wie B. Space vehicle dynamics and control. Reston VA: AIAA; 1998. [Link]
Sidi MJ. Spacecraft dynamics and control: A practical engineering approach. Cambridge UK: Cambridge University Press; 1997. [Link] [DOI:10.1017/CBO9780511815652]
Slotine JJE, Li W. Applied nonlinear control. Upper Saddle River: Prentice-Hall; 1991. [Link]
Tavakoli AH, Kalhor A, Dehghan SMM. Implementation of three axis attitude controllers for evaluation of a micro-gravity satellite simulator. Journal of Space Science & Technology. 2012;5(2):59-68. [Persian] [Link]
Makovec KL. A nonlinear magnetic controller for three-axis stability of nanosatellites [Dissertation]. Blacksburg VA: Virginia Polytechnic Institute and State University; 2001. [Link]
Fakoor M, Sattarzadeh AR, Bakhtiari M. A novel 3-axis attitude stabilization with redundant thruster for a cube-satellite supported by reaction wheels. Modares Mechanical Engineering. 2016;16(4):391-402. [Persian] [Link]
Larson WJ, Wertz JR. Space mission analysis and design. Larson WJ, Wertz JR, editors. Torrance CA: Microcosm; 1992. [Link] [DOI:10.1007/978-94-011-2692-2]