مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی انتشار ترک بین‌لایه‌ا‌ی در سطح اتصال وصله کامپوزیتی به زیر لایه فولادی

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه صنعتی قوچان، قوچان، ایران
چکیده


یکی از کاربردهای مواد کامپوزیتی در صنعت نفت و گاز، استفاده از این مواد برای تعمیر خطوط لوله فلزی فرسوده است. محاسبه نرخ رهایی انرژی کرنشی مود اول شکست، معیار مهمی در بررسی مقاومت اتصال و پیش‌بینی خرابی این نوع سازه‌ها است. در این مقاله، نرخ رهایی انرژی کرنشی حین رشد ترک در اتصال وصله کامپوزیتی به زیر لایه فولادی مورد بررسی قرار می‌گیرد. در این راستا ابتدا با استفاده از تئوری تیر الاستیک، روشی نوین برای محاسبه ضخامت فلز و کامپوزیت برای داشتن نمونه‌های یک‌سرگیردار متقارن ناهمجنس (UDCB) ارایه می‌شود. این امر به این دلیل صورت می‌گیرد که استاندارد آزمون تجربی نرخ رهایی انرژی کرنشی (ASTM-D۵۵۲۸)، برای نمونه‌های تیر یک‌سرگیردار متقارن است. نمونه‌های ساخته‌شده در این پژوهش شامل کامپوزیت ساخته‌شده از الیاف شیشه تک‌جهته، رزین اپوکسی به‌همراه سخت‌کننده در نیمه بالایی و فولاد در نیمه پایینی تیر است. پس از نمونه‌سازی، نرخ رهایی انرژی کرنشی شکست نمونه‌های تیر یک‌سرگیردار دولبه متقارن و نامتقارن، به‌صورت تجربی محاسبه می‌شود. علاوه بر این برای تفکیک مود یک و دوی شکست در نمونه‌های متقارن و نامتقارن، مدل‌سازی المان محدود به‌روش بستن ترک مجازی صورت می‌گیرد. این تحلیل، صحت رابطه ارایه‌شده برای ضخامت لایه‌ها در تیرهای ناهمجنس برای رسیدن به مود یک خالص شکست در نمونه‌های متقارن را مورد آزمون قرار داده و تایید می‌کند. همچنین سهم مود اول و دوم شکست را در نرخ رهایی انرژی کرنشی کل نمونه‌های نامتقارن تعیین می‌نماید.



کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the Crack Propagation at the Surface of the Composite Patch Bonding to the Steel Substrate

نویسندگان English

S. Maleki
A. Andakhshideh
A. Seyfi
Mechanical Engineering Department, Engineering Faculty, Quchan University of Technology, Quchan, Iran
چکیده English

One of the applications of composite materials in the oil and gas industry is to repair worn metal pipelines. Calculating the strain energy release rate of the first failure mode is an important criterion for testing the bond strength and predicting the failure of these types of structures. In this paper, the rate of strain energy release during crack growth in bonding a composite patch to a steel substrate is investigated. In this regard, using the theory of elastic beam first, a new method is proposed to calculate the thickness of the metal and composite for Unlike Double Cantilever Beam (UDCB). This is due to the fact that the standard for experimental test procedure of strain energy release rate (ASTM-D5528) is for symmetric double cantilever beams. In this study, samples are fabricated from composite consisting of unidirectional fiberglass/ epoxy resin with harder in the upper and steel in the lower half of the beam. After sample fabrication, the strain energy release rate of UDCB and Asymmetric Unlike Double Cantilever Beam (AUDCB) are calculated experimentally. In addition, for the separation of first and second failure modes in symmetric and asymmetric samples, finite element simulation based on the virtual crack closure technique is presented. This analysis is to qualify the accuracy of the proposed equation for the thickness of unlike beams to achieve the first failure pure mode of symmetric samples. Also, it calculates the contribution of the first and second modes of failure in the strain energy release rate of AUDCB samples.



کلیدواژه‌ها English

Composite Repair of Steel Structures
Unlike double cantilever beam
Strain Energy Release Rate
Virtual crack closure technique
Crack Growth
Abd-Elhady AA, Sallam HEM, Mubaraki MA. Failure analysis of composite repaired pipelines with an inclined crack under static internal pressure. Procedia Structural Integrity. 2017;5:123-130. [Link] [DOI:10.1016/j.prostr.2017.07.077]
Arikan H. Failure analysis of (±55°)3 filament wound composite pipes with an inclined surface crack under static internal pressure. Composite Structures. 2010;92(1):182-187. [Link] [DOI:10.1016/j.compstruct.2009.07.027]
Alexander C, Ochoa OO. Extending onshore pipeline repair to offshore steel risers with carbon-fiber reinforced composites. Composite Structures. 2010;92(2):499-507. [Link] [DOI:10.1016/j.compstruct.2009.08.034]
Senthil K, Arockiarajan A, Palaninathan R. Experimental determination of fracture toughness for adhesively bonded composite joints. Engineering Fracture Mechanics. 2016;154:24-42. [Link] [DOI:10.1016/j.engfracmech.2015.11.015]
Campos AAMA, De Jesus AMP, Correia JAFO, Morais JJL. Fatigue crack growth behavior of bonded aluminum joints. Procedia Engineering. 2016;160:270-277. [Link] [DOI:10.1016/j.proeng.2016.08.890]
De Gracia J, Boyano A, Arrese A, Mujika F. A new approach for determining the R-curve in DCB tests without optical measurements. Engineering Fracture Mechanics. 2015;135:274-285. [Link] [DOI:10.1016/j.engfracmech.2015.01.016]
Dias GF, De Moura MFSF, Chousal JAG, Xavier J. Cohesive laws of composite bonded joints under mode I loading. Composite Structures. 2013;106:646-652. [Link] [DOI:10.1016/j.compstruct.2013.07.027]
Choupani N. Mixed-mode cohesive fracture of adhesive joints: Experimental and numerical studies. Engineering Fracture Mechanics. 2008;75(15):4363-4382. [Link] [DOI:10.1016/j.engfracmech.2008.04.023]
Dehghan Manshadi B, Vassilopoulos AP, Botsis J. A combined experimental/numerical study of the scaling effects on mode I delamination of GFRP. Composites Science and Technology. 2013;83:32-39. [Link] [DOI:10.1016/j.compscitech.2013.04.016]
Pohlit II DJ. Dynamic mixed-mode fracture of bonded composite joints for automotive crashworthiness [Dissertation]. Blacksburg VA: Virginia Polytechnic Institute and State University; 2007. [Link]
Da Silva LFM, Esteves VHC, Chaves FJP. Fracture toughness of a structural adhesive under mixed mode loadings. Materialwissenschaft und Werkstofftechnik. 2011;42(5):460-470. [Link] [DOI:10.1002/mawe.201100808]
Zamani Zakaria A, Sheleshnezhad K, Navid Chakherlou T, Olad A. Effects of aluminum surface treatments on the interfacial fracture toughness of carbon-fiber aluminum laminates. Engineering Fracture Mechanics. 2017;172:139-151. [Link] [DOI:10.1016/j.engfracmech.2017.01.004]
Xiao F, Hui CY, Kramer EJ. Analysis of a mixed mode fracture specimen: The asymmetric double cantilever beam. Journal of Materials Science. 1993;28(20):5620-5629. [Link] [DOI:10.1007/BF00367838]
Mollón V, Bonhomme J, Viña J, Argüelles A. Theoretical and experimental analysis of carbon epoxy asymmetric dcb specimens to characterize mixed mode fracture toughness. Polymer Testing. 2010;29(6):766-770. [Link] [DOI:10.1016/j.polymertesting.2010.04.001]
Shokrieh MM, Zeinedini A. A novel method for calculation of strain energy release rate of asymmetric double cantilever laminated composite beams. Applied Composite Materials. 2014;21(3):399-415. [Link] [DOI:10.1007/s10443-013-9328-5]
Yahya NA, Hashim S. Stress analysis of steel/carbon composite double lap shear joints under tensile loading. Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design and Applications. 2016;230(1):88-104. [Link] [DOI:10.1177/1464420714547223]
ASTM. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites [Internet]. West Conshohocken PA: ASTM International; 2007 [cited 2018 August 01]. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/D5528-01R07.htm. [Link]
Reddy JN. Theory and analysis of elastic plates and shells. Boca Raton: CRC Press; 2006. [Link]
Asgari Mehrabadi F. Fracture mechanic analysis in adhesive composite/aluminum joints [Dissertation]. Tabriz: University of Tabriz; 2011. [Persian] [Link]
Kariman Moghadam A, Rahnama S, Maleki S. Experimental and numerical investigation of crack growth in adhesive bonding of two composite plates under mode I. Modares Mechanical Engineering. 2016;16(5):271-280. [Persian] [Link]
Krueger R. Virtual crack closure technique: History, approach, and applications. Applied Mechanics Reviews. 2004;57(2):109-143. [Link] [DOI:10.1115/1.1595677]