مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مقایسه تطبیقی راهکارهای کاهنده دما در پوسته هموستاتیک

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه معماری، دانشکده هنرهای زیبا، دانشگاه تهران، تهران، ایران
2 گروه معماری، دانشکده معماری و شهرسازی، دانشگاه هنر، تهران، ایران
3 گروه معماری، دانشکده هنر، پردیس بین‌المللی کیش، دانشگاه تهران، کیش، ایران
چکیده
توسعه محیط‌های مصنوع و افزایش بهره‌برداری از منابع انرژی موجب شده است تا ضرورت استفاده از روش‌های مختلف در بهینه‌سازی مصرف انرژی ساختمان‌ها مورد توجه قرار گیرد. ایجاد پوسته‌ای ثانویه در اطراف بنا موجب می‌شود تا ساختمان در شرایط مطلوب‌تری نسبت به محیط اطراف قرار گیرد و میزان انرژی مصرفی آن برای تأمین شرایط آسایش حرارتی فضای داخلی کاهش یابد. هموستازی به‌عنوان فرآیندی طبیعی که با برقراری تعادل میان راهکارها، موجب بهینه‌سازی مصرف انرژی می‌شود، به‌عنوان الگویی در طراحی این پوسته مورد توجه قرار گرفته است. انواع متفاوتی از پوسته‌های هوشمند در مرز میان بنا و محیط اطراف وجود دارند؛ نوعی از پوسته هوشمند که مبتنی بر اصل هموستازی طراحی می‌شود این توانایی را دارد که با سازگاری نسبت به تغییرات محیطی، تعادلی پایدار میان راهکارهای مختلف ایجاد کند و سلسله‌مراتب استفاده از آنها را در شرایط مختلف مشخص کند تا در نهایت، تأمین شرایط آسایش حرارتی درون بنا با بازدهی بالاتری نسبت به پوسته‌های هوشمند متداول تأمین شود. در این تحقیق حدود نوسان مطلوب دما در پوسته هموستاتیک، تعیین و راهکارهایی از یک سیستم هموستاز طبیعی اقتباس و در طراحی پوسته مورد نظر به کار گرفته شده است. هدف از این تحقیق، قیاس میزان بازدهی راهکارهای مختلف کاهنده دما در شرایط متفاوت محیطی است که بر این اساس، راهکار بهینه مشخص می‌شود. بدین منظور مدولی از پوسته هموستاتیک ساخته می‌شود و در شرایط آزمایشگاهی، رفتار پوسته مورد ارزیابی قرار می‌گیرد و ارتباط رفتاری آن با نوسان دما بررسی می‌شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparative Comparison of Temperature Reduction Solutions in Homeostatic Façade

نویسندگان English

K. Taghizadeh Azari 1
M.R. Matini 2
M. Zare 3
1 Architecture Department, Fine Art Faculty, University of Tehran, Tehran, Iran
2 Architecture Department, Architecture and Urban Planning Faculty, University of Art, Tehran, Iran
3 Architecture Department, Art Faculty, Kish International Campus, University of Tehran, Kish, Iran
چکیده English

The development of built environment and increase of energy source utilization have led to paying attention to different procedures to optimized energy consumption in buildings. Designing different sort of double skin façade provides opportunities to keep building in more balanced environment and use less energy to provide comfort condition. As a natural process that optimizes energy consumption by balancing between different solutions, homeostasis is used as a pattern in designing this sort of homeostatic façade. Nowadays, different sorts of smart façade have been used on the boundary of building and environment. A sort of smart façade, which is designed based on homeostatic process, is able to create a sustainable balance between different solutions, adapting to environmental changes, and define the hierarchy of their use in different conditions, so as to provide thermal comfort conditions inside the building with higher efficiency than conventional smart façades. In this study, temperature fluctuation limits in homeostatic façade is determined and solutions are derived from a natural homeostasis system, and used in the design of the desired façade. The aim of this research is to compare the efficiency of temperature reduction solutions in different conditions and specified optimal one. For this end, a modulus of homeostatic façade is built and the operation under laboratory condition is evaluated, and also its behavioral relationship is examined with temperature fluctuations.

کلیدواژه‌ها English

Homeostatic façade
Efficiency
Temperature fluctuation
Homeostasis
Attmann O. Green architecture: Advanced technologies and materials, C2010. Zahri S, translator. Tehran: Mehrazan; 2012. p. 38. [Persian] [Link]
Sayyadi SE, Maddahi SM. Sustainable architecture. Tehran: Lotus; 2011. p. 16. [Persian] [Link]
Davies KJA. Adaptive homeostasis. Molecular Aspects of Medicine. 2016;49;1-7. [Link] [DOI:10.1016/j.mam.2016.04.007]
Chiras DD. Human biology: Health, homeostasis, and the environment. Burlington: Jones and Bartlett; 2002. p. 4. [Link]
Gruber P. Biomimetics in architecture: Architecture of life and buildings, 2011. Zare M, Falahat MS, translators. Tehran: Iranian Students Book Agency; 2016. p. 274. [Persian] [Link] [DOI:10.1007/978-3-7091-0332-6]
Sandler U, Tsitolovsky L. The S-Lagrangian and a theory of homeostasis in living systems. Physica A Statistical Mechanics and its Applications. 2017;471:540-553. [Link] [DOI:10.1016/j.physa.2016.12.060]
Wang LS, Ma P. The homeostasis solution - mechanical homeostasis in architecturally homeostatic buildings. Applied Energy. 2016;162:183-196. [Link] [DOI:10.1016/j.apenergy.2015.10.058]
Arens E, Zhang H. The skin's role in human thermoregulation and comfort. In: Pan N, Gibson P, Textile Institute (Manchester, England). Thermal and moisture transport in fibrous materials. Pan N, Gibson P, editors. Boca Raton FL: CRC Press; 2006. p. 560. [Link] [DOI:10.1533/9781845692261.3.560]
Heidari Sh. Thermal adaptation in architecture, first step of energy saving. Tehran: University of Tehran; 2014. pp. 68-71. [Persian] [Link]
Fu M, Weng W, Chen W, Luo N. Review on modeling heat transfer and thermoregulatory responses in human body. Journal of Thermal Biology. 2016;62(Pt B):189-200. [Link] [DOI:10.1016/j.jtherbio.2016.06.018]