مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی خواص ارتعاشی و میرایی کامپوزیت‌های گرافیت نانوپلیتلت/اپوکسی

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان، ایران
چکیده
در پژوهش حاضر، تاثیر وجود درصدهای مختلف گرافیت نانوپلیتلت (GNP) به‌عنوان فیلر روی خواص ارتعاشی رزین اپوکسی مورد مطالعه قرار گرفته است. بدین منظور نمونه­ های کامپوزیتی با مقادیر فیلر صفر تا ۵ درصد وزنی به روش ترکیب انحلالی ساخته شده و آزمایشات ارتعاش آزاد و اجباری روی تیرهای کامپوزیتی حاصل صورت پذیرفت. براساس اطلاعات حاصل از ارتعاش آزاد، فاکتور اتلاف ساختاری η به ­صورت تابعی از درصد فیلر به‌دست آمده و مشاهده شد که با افزایش فیلر از صفر تا ۳ درصد وزنی، فاکتور اتلاف کاهش پیدا می­کند. با افزایش این درصد از ۳ تا ۵ روند تغییرات صعودی در فاکتور اتلاف مشاهده شد. در مرحله بعد نمودار پاسخ فرکانسی (FRF) برای اپوکسی خالص در محدوده مود دوم ارتعاشی به‌دست آمده و به‌واسطه مجموع اطلاعات حاصل از ارتعاشات آزاد و اجباری، ضرایب میرایی ریلی برای اپوکسی خالص تعیین شد. ضرایب حاصل حاکی از یک وابستگی غیرخطی نسبت میرایی به فرکانس طبیعی برای اپوکسی خالص هستند. در نهایت به­منظور مدل­سازی رفتار ارتعاشی کامپوزیت‌های مورد بررسی، یک حجمک نماینده (RVE) با درصدهای وزنی فیلر صفر تا ۵ تهیه شد. صحت ­سنجی نتایج حاصل از مدل­سازی از طریق مقایسه نتایج با داده­های تجربی انجام­شده و اعتبار فرضیات صورت­گرفته در مدل­سازی بررسی شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the Vibrational and Damping Properties of Graphite Nano - Platelet/Epoxy Composites

نویسندگان English

A.R. Taherzadeh-Fard
M. Javanbakht
M. Karevan
Mechanical Engineering Department, Isfahan University of Technology, Isfahan, Iran
چکیده English

In the present study, the effect of graphite nano platelet (GNP) as a filler on the vibrational properties of the epoxy EP411 DSM matrix was studied. For this purpose, GNP-epoxy composites samples were fabricated with 0-5 wt.% of GNPs using the solution mixing method. Free and forced vibrations tests on the cantilever composite specimens were conducted. Based on the free vibration results, the structural damping loss factor η was obtained as a function of the GNP loading. It was found that η decreases as the GNP wt.% increases and reaches to the lowest value at 0-3 wt.% of GNP content, and increases as the GNP loading increases and reaches to the value at 3-5 wt.% of GNP. Also, the frequency response function (FRF) around the second vibration mode was obtained for the neat epoxy. The Rayleigh damping coefficients were calculated employing the free and forced vibration results. The results revealed a nonlinear dependence of damping ratio η on the natural frequency of the neat epoxy. A representative volume element (RVE) incorporating 0-5 wt.% of GNPs was generated and the vibrational properties were numerically simulated. The modeling results were compared with those obtained from the experiment to verify whether the basic assumptions had been chosen properly.


کلیدواژه‌ها English

Epoxy
Graphite Nano-Platelet
Vibration
Damping
Representative Volume Element (RVE)
Li B, Zhong WH. Review on polymer/graphite nanoplatelet nanocomposites. Journal of Materials Science. 2011;46(17):5595-5614. [Link] [DOI:10.1007/s10853-011-5572-y]
Chung DDL. A review of exfoliated graphite. Journal of Materials Science. 2016;51(1):554-568. [Link] [DOI:10.1007/s10853-015-9284-6]
Kuila T, Khanra P, Kumar Mishra A, Kim NH, Lee JH. Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties. Polymer Testing. 2012;31(2):282-289. [Link] [DOI:10.1016/j.polymertesting.2011.12.003]
Kuester S, Demarquette NR, Ferreira Jr JC, Soares BG, Barra GMO. Hybrid nanocomposites of thermoplastic elastomer and carbon nanoadditives for electromagnetic shielding. European Polymer Journal. 2017;88:328-339. [Link] [DOI:10.1016/j.eurpolymj.2017.01.023]
Poláková L, Sedláková Z, Ecorchard P, Pavlova E, Peter J, Paruzel B, et al. Poly(meth)acrylate nanocomposite membranes containing in situ exfoliated graphene platelets: Synthesis, characterization and gas barrier properties. European Polymer Journal. 2017;94:431-445. [Link] [DOI:10.1016/j.eurpolymj.2017.07.033]
Jun YS, Um JG, Jiang G, Lui G, Yu A. Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties. Composites Part B: Engineering. 2018;133:218-225. [Link] [DOI:10.1016/j.compositesb.2017.09.028]
Yang B, Shi Y, Miao JB, Xia R, Su LF, Qian JS, et al. Evaluation of rheological and thermal properties of polyvinylidene fluoride (PVDF)/graphene nanoplatelets (GNP) composites. Polymer Testing. 2018;67:122-135. [Link] [DOI:10.1016/j.polymertesting.2018.02.011]
Girdthep S, Sankong W, Pongmalee A, Saelee T, Punyodom W, Meepowpan P, et al. Enhanced crystallization, thermal properties, and hydrolysis resistance of poly(L-lactic acid) and its stereocomplex by incorporation of graphene nanoplatelets. Polymer Testing. 2017;61:229-239. [Link] [DOI:10.1016/j.polymertesting.2017.05.009]
Gao Y, Picot OT, Bilotti E, Peijs T. Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. European Polymer Journal. 2017;86:117-131. [Link] [DOI:10.1016/j.eurpolymj.2016.10.045]
Zegeye E, Ghamsari AK, Woldesenbet E. Mechanical properties of graphene platelets reinforced syntactic foams. Composites Part B: Engineering. 2014;60:268-273. [Link] [DOI:10.1016/j.compositesb.2013.12.040]
Shokrieh MM, Hosseinkhani MR, Naimi-Jamal MR, Tourani H. Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Polymer Testing. 2013;32(1):45-51. [Link] [DOI:10.1016/j.polymertesting.2012.09.001]
Liang JZ, Du Q, Chi-Pong Tsui G, Tang CY. Tensile properties of graphene nano-platelets reinforced polypropylene composites. Composites Part B: Engineering. 2016;95:166-171. [Link] [DOI:10.1016/j.compositesb.2016.04.011]
Aluko O, Gowtham S, Odegard GM. Multiscale modeling and analysis of graphene nanoplatelet/carbon fiber/epoxy hybrid composite. Composites Part B: Engineering. 2017;131:82-90. [Link] [DOI:10.1016/j.compositesb.2017.07.075]
Feng C, Kitipornchai S, Yang J. Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Composites Part B: Engineering. 2017;110:132-140. [Link] [DOI:10.1016/j.compositesb.2016.11.024]
Esposito Corcione C, Maffezzoli A. Transport properties of graphite/epoxy composites: Thermal, permeability and dielectric characterization. Polymer Testing. 2013;32(5):880-888. [Link] [DOI:10.1016/j.polymertesting.2013.03.023]
Cui X, Sun S, Han B, Yu X, Ouyang J, Zeng S, et al. Mechanical, thermal and electromagnetic properties of nanographite platelets modified cementitious composites. Composites Part A: Applied Science and Manufacturing. 2017;93:49-58. [Link] [DOI:10.1016/j.compositesa.2016.11.017]
Khan SU, Li CY, Siddiqui NA, Kim JK. Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes. Composites Science and Technology. 2011;71(12):1486-1494. [Link] [DOI:10.1016/j.compscitech.2011.03.022]
Ferreira CI, Bianchi O, Alfredo Soto Oviedo M, Vinicius Bof de Oliveira R, Santos Mauler R. Morphological, viscoelastic and mechanical characterization of polypropylene/exfoliated graphite nanocomposites. Polímeros. 2013;23(4):456-461. [Link] [DOI:10.4322/polimeros.2013.066]
Odegard GM, Gates TS. Modeling and testing of the viscoelastic properties of a graphite nanoplatelet/epoxy composite. Journal of Intelligent Material Systems and Structures. 2006;17(3):239-246. [Link] [DOI:10.1177/1045389X06057523]
Nasr Esfahani A, Katbab A, Taeb A, Simon L, Pope MA. Correlation between mechanical dissipation and improved X-band electromagnetic shielding capabilities of amine functionalized graphene/thermoplastic polyurethane composites. European Polymer Journal. 2017;95:520-538. [Link] [DOI:10.1016/j.eurpolymj.2017.08.038]
Saboori A, Pavese M, Badini C, Fino P. Development of Al-and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization. Frontiers of Materials Science. 2017;11(2):171-181. [Link] [DOI:10.1007/s11706-017-0377-9]
Li M, Xiong P, Mo M, Cheng Y, Zheng Y. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications. Frontiers of Materials Science. 2016;10(3):270-280. [Link] [DOI:10.1007/s11706-016-0347-7]
Young RJ, Liu M, Kinloch IA, Li S, Zhao X, Vallés C, et al. The mechanics of reinforcement of polymers by graphene nanoplatelets. Composites Science and Technology. 2018;154:110-116. [Link] [DOI:10.1016/j.compscitech.2017.11.007]
Rao SS. Mechanical Vibrations. 5th Edition. Upper Saddle River: Prentice Hall; 2011. [Link]
Gitman IM, Askes H, Sluys LJ. Representative volume: Existence and size determination. Engineering Fracture Mechanics. 2007;74(16):2518-2534. [Link] [DOI:10.1016/j.engfracmech.2006.12.021]
Rémond Y, Ahzi S, Baniassadi M, Garmestani H. Applied RVE Reconstruction and Homogenization of Heterogeneous Materials. Hoboken: Wiley; 2016. [Link] [DOI:10.1002/9781119307563]
Cho J, Luo JJ, Daniel IM. Mechanical characterization of graphite/epoxy nanocomposites by multi-scale analysis. Composites Science and Technology. 2007;67(11-12):2399-2407. [Link] [DOI:10.1016/j.compscitech.2007.01.006]