مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

طراحی و پیاده‌سازی کنترل‌کننده مد لغزشی ترمینال برای دنبال‌یابی یک ربات سیار چرخ‌دار

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه کنترل، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران
2 گروه مکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران
چکیده
در این مقاله دنبال‌یابی مسیرمرجع براساس کنترل مد لغزشی ترمینال برای یک ربات سیار چرخ‌دار پیشنهاد شده است و روش پیشنهادی روی یک ربات سیار به صورت عملی پیاده‌سازی شده است. ربات محرک چرخ‌دار یک سیستم غیرهولونومیک غیرخطی که دارای دو ورودی برای کنترل است و دارای سه متغیر حالت و یک قید غیرهولونومیک است. برای کنترل این سیستم در این مقاله ابتدا با تبدیل معادلات سیستم غیرهولونومیک به فرم زنجیره‌ای، معادلات ربات سیار چرخ‌دار برای معادلات زنجیره‌ای تعمیم‌یافته استخراج می‌شود. سپس روش کنترل مد لغزشی ترمینال زمان محدود برای کنترل دنبال‌یابی مسیر مرجع این سیستم ارائه می‌شود. پس از آن با استفاده از یک محیط شبیه‌سازی گرافیکی در نرم‌افزار متلب قابل اجرا است. روش پیشنهادی برای ربات سیار چرخ‌دار مورد استفاده در آزمایشگاه شبیه‌سازی می‌شود. نتایج شبیه‌سازی در محیط گرافیکی کارآیی روش پیشنهادی را در مقایسه با روش کنترل مد لغزشی کلاسیک به خوبی نشان می‌دهد. در پایان نتایج عملی پیاده‌سازی کنترل‌کننده برای دنبال‌یابی مسیر مرجع ارائه‌شده روی ربات سیار نشان داده شده است. نتایج حاصل از پیاده‌سازی عملی به خوبی عملکرد مناسب روش پیشنهادی را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Design and Implementation of Terminal Sliding Mode Controller for Tracking a Wheeled Mobile Robot

نویسندگان English

E. Ramezanzadeh 1
Z. Rahmani 1
M. Hasanghasemi 2
1 Control Department, Faculty of Electrical & Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran
2 Mechanical Department, Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran
چکیده English

In this paper, a trajectory tracking control of a nonholonomic wheeled mobile robot is proposed based on terminal sliding mode control, and the proposed method has been implemented on a wheeled mobile robot. A wheeled mobile robot is a nonlinear nonholonomic system, and it has three extended coordinates and a nonholonomic constraint. First, the equation of wheeled mobile robot for the extended chained form is derived by transformation of the nonholonomic system equation to the extended chained form. Then a finite time terminal sliding mode approach for trajectory tracking control of the wheeled mobile robot is presented. Afterward, with a graphical simulation environment which is applicable in the Matlab software, graphical simulations of wheeled mobile robot’s movement are done. The result of the graphical simulation in comparing with sliding mode control show the performance of the proposed method. Finally, the practical results of implementation of the controller for trajectory tracking of the wheeled mobile robot is shown, and the results show good tracking performance of the proposed method.

کلیدواژه‌ها English

Nonholonomic systems
Wheeled mobile robot
Sliding mode control
Terminal Sliding Mode Control
Graphical Simulation
Murray RM, Sastry SS. Nonholonomic motion planning: steering using sinusoids. IEEE Transactions on Automatic Control. 1993;38(5):700-16. [Link] [DOI:10.1109/9.277235]
Falsafi M, Alipour K, Tarvirdizadeh B. Fuzzy motion control for wheeled mobile robots in real-time. Journal of Computational and Applied Research in Mechanical Engineering. 2019;8(2):133-144. [Link]
Mobayen S. Fast terminal sliding mode tracking of non-holonomic systems with exponential decay rate. IET Control Theory & Applications. 2015;9(8):1294-301. [Link] [DOI:10.1049/iet-cta.2014.1118]
Andrea-Novel B, Bastin BG, Campion G. Modelling and control of non-holonomic wheeled mobile robots. IEEE International Conference on Robotics and Automation; 1991 Apr 9-11; Sacramento, CA, USA. IEEE; 2002. [Link]
Yang JM, Kim JH. Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Transactions on Robotics and Automation. 1999;15(3):578-87. [Link] [DOI:10.1109/70.768190]
Nikranjbar A, Haidari M, Atai AA. Adaptive sliding mode tracking control of mobile robot in dynamic environment using artificial potential fields. Journal of Computer & Robotics. 2018;11(1):1-14. [Link]
Aguilar LE, Hamel T, Soueres P. Robust path following control for wheeled robots via sliding mode techniques. Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97; 1997 Sep 1-11; Grenoble, France. IEEE; 2002. [Link]
Normey-Rico JE, Alcala I, Ortega JG, Camacho EF. Mobile robot path tracking using a robust PID controller. Control Engineering Practice. 2001;9(11):1209-14. [Link] [DOI:10.1016/S0967-0661(01)00066-1]
Dumlu A, Yıldırım MR. Real-time implementation of continuous model based sliding mode control technique for trajectory tracking control of mobile robot. BALKAN Journal of Electrical & Computer Engineering. 2018;6(4):211-6. [Link] [DOI:10.17694/bajece.459568]
Bui TH, Nguyen TT. Control of two-wheeled welding mobile robot using adaptive controller. ASEAN Engineering Journal Part A. 2014;4(2):42-52. [Link]
Nguyen T, Nguyentien K, Do T, Pham T. Neural network-based adaptive sliding mode control method for tracking of a nonholonomic wheeled mobile robot with unknown wheel slips, model uncertainties, and unknown bounded external disturbances. Acta Polytechnica Hungarica. 2018;15(2):103-23. [Link]
Martínez R, Castillo O, Aguilar LT. Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Information Sciences. 2009;179(13):2158-74. [Link] [DOI:10.1016/j.ins.2008.12.028]
Park BS, Yoo SJ, Park JB, Choi UH. Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Transactions on Control Systems Technology. 2009;17(1):207-14. [Link] [DOI:10.1109/TCST.2008.922584]
Chen CY, Li THS, Yeh YC, Chang CC. Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronics. 2009;19(2):156-66. [Link] [DOI:10.1016/j.mechatronics.2008.09.004]
Li Y, Wang Z, Zhu L. Adaptive neural network PID sliding mode dynamic control of nonholonomic mobile robot. The 2010 IEEE International Conference on Information and Automation; 2010 June 20-23; Harbin, China. IEEE; 2010. [Link] [DOI:10.1109/ICINFA.2010.5512467]
Fei J, Ding H. Adaptive sliding mode control of dynamic system using RBF neural network. Nonlinear Dynamics. 2012;70(2):1563-73. [Link] [DOI:10.1007/s11071-012-0556-2]
Brockett RW. Asymptotic stability and feedback stabilization. Differential Geometric Control Theory. 1983;27(1):181-91. [Link]
Pomet JB. Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Systems & Control Letters. 1992;18(2):147-58. [Link] [DOI:10.1016/0167-6911(92)90019-O]
Samson C. Velocity and torque feedback control of a nonholonomic cart. Advanced Robot Control. France: Springer; 1998. p. 125-51. [Link] [DOI:10.1007/BFb0039269]
Mattapallil JJ, Aswin RB. Self-balancing two wheel mobile robot using sliding mode control. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. 2017;6(4):3116-24. [Link]
Wu Y, Wang B, Zong GD. Finite-time tracking controller design for nonholonomic systems with extended chained form. IEEE Transactions on Circuits and Systems II: Express Briefs. 2005;52(11):798-802. [Link] [DOI:10.1109/TCSII.2005.852528]
Mobayen S. Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method. Nonlinear Dynamics. 2015;80(1-2):669-83. [Link] [DOI:10.1007/s11071-015-1897-4]
Ghasemi H, Rezaie B, Rahmani Z. An intelligent terminal sliding mode control method for nonholonomic systems in extended chained form. 3rd National and First International Conference in Applied Research on Electrical, Mechanical and Mechatronics Engineering; 2016 Feb 17-18; Malek Ashtar University, Tehran, Iran. [Link]
Yu X, Zhihong M. Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 2002;49(2):261-4. [Link] [DOI:10.1109/81.983876]
Chiu CS. Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems. Automatica. 2012;48(2):316-26. [Link] [DOI:10.1016/j.automatica.2011.08.055]
Chwa D. Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Transactions on Control Systems Technology. 2004;12(4):637-44. [Link] [DOI:10.1109/TCST.2004.824953]