مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل و کنترل دینامیک غیرخطی میکروسکوپ نیروی اتمی بر اساس مدل غیرمحلی

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه صنعتی قوچان، قوچان، ایران
چکیده
در این مقاله میکروسکوپ نیروی اتمی بر اساس تئوری غیرکلاسیک غیرمحلی مدل‌سازی شده و ارتعاشات غیرخطی در این سیستم تحلیل و کنترل می‌شود. در این مدل‌سازی معادله حاکم بر نانوکانتیلور اویلر- برنولی با در نظر گرفتن غیرخطی هندسی فون کارمن و بر اساس تئوری الاستیسیته غیرمحلی ارینگن با استفاده از اصل همیلتون استخراج می‌شود. در گام بعد با به‌کاربردن روش گالرکین، معادله دیفرانسیل حاکم بر دینامیک میکروسکوپ نیروی اتمی در حضور نیروهای جاذبه و دافعه واندروالس به دست می‌آید. معادله غیرخطی حاکم با استفاده از روش مقیاس‌های زمانی چندگانه حل شده و تشدیدهای اولیه و ثانویه میکروسکوپ نیروی اتمی مطالعه می‌شود. در این راستا منحنی‌های پاسخ فرکانسی و دامنه پاسخ برحسب دامنه تحریک، برای تشدیدهای اولیه، سوپرهارمونیک و ساب‌هارمونیک به ازای مقادیر مختلف پارامتر غیرمحلی رسم می‌شود. بر این اساس، نشان داده می‌شود که تشدیدهای اولیه، سوپرهارمونیک و ساب‌هارمونیک میکروسکوپ نیروی اتمی به طور چشمگیری تحت تأثیر پارامتر غیرمحلی هستند. نتایج به دست آمده نشان می‌دهند که استفاده از تئوری غیرمحلی برای تحلیل ارتعاشات غیرخطی میکروسکوپ نیروی اتمی یک ضرورت اساسی است. سپس، علاوه بر تحلیل دینامیکی، با طراحی و به‌کاربردن کنترلر مقاوم تطبیقی فازی، ارتعاشات آشوبناک در مدل غیرمحلی میکروسکوپ نیروی اتمی به طور کامل کنترل و حذف می‌شود. برای این کار کنترلر مقاوم تطبیقی فازی به‌عنوان یک روش قدرتمند به‌منظور کنترل آشوب در مدل غیرمحلی میکروسکوپ نیروی اتمی استفاده می‌شود. نتایج به دست آمده در فرآیند طراحی و کنترل میکروسکوپ نیروی اتمی کاربرد دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Nonlinear Dynamics Control and Analysis of Atomic Force Microscope Based On Nonlocal Model

نویسندگان English

H. Karamad
S. Maleki
A. Andakhshideh
Mechanical Engineering Department, Engineering Faculty, Quchan University of Technology, Quchan, Iran
چکیده English

In this paper, an atomic force microscope is modeled based on non-classical nonlocal theory and nonlinear vibration of the system is analyzed and controlled. In this modeling, the Hamilton principle is used to derive the governing equation of Euler-Bernoulli nanocantilever based on the Eringen nonlocal elasticity theory considering Von-Karman geometric non-linearity. In the next step, using the Galerkin method, the governing dynamics differential equation of the atomic force microscope is obtained in the presence of attractive and repulsive van der Waals forces. The governing nonlinear equation is solved by employing multiple time scales method, and primary and secondary resonance of the atomic force microscope is studied. In this regard, the frequency response and excitation amplitude curves of primary, superharmonic and subharmonic resonances are plotted for different values ​​of the nonlocal parameter. Accordingly, it is shown that primary, superharmonic and subharmonic resonances of atomic force microscope are significantly affected by the nonlocal parameter. The results show that the use of nonlocal theory is a fundamental necessity for analyzing nonlinear vibrations of the atomic force microscope. Then, in addition to dynamic analysis, the chaotic vibrations are completely controlled and removed in the nonlocal model of the atomic force microscope by designing and implementing the robust adaptive fuzzy controller. For this task, the robust adaptive fuzzy controller which is considered as a powerful method of chaos controlling is used in the nonlocal model of atomic force microscope. The obtained results are used in the design and control process of the atomic force microscope.



کلیدواژه‌ها English

Atomic force microscope
Nanocantilever
Nonlocal theory
Multiple Time Scales
Chaos Control
Binnig G, Quate CF, Gerber C. Atomic force microscope. Physical Review Letters. 1986;56(9):930. [Link] [DOI:10.1103/PhysRevLett.56.930]
Fang TH, Chang WJ, Weng CI. Nanoindentation and nanomachining characteristics of gold and platinum thin films. Materials Science and Engineering: A. 2006;430(1-2):332-340. [Link] [DOI:10.1016/j.msea.2006.05.106]
Krieg M, Fläschner G, Alsteens D, Gaub BM, Roos WH, Wuite GJ, et al. Atomic force microscopy-based mechanobiology. Nature Reviews Physics. 2019;1:41-57. [Link] [DOI:10.1038/s42254-018-0001-7]
Rodriguez BJ, Callahan C, Kalinin SV, Proksch R. Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology. 2007;18(47):475504. [Link] [DOI:10.1088/0957-4484/18/47/475504]
Mazeran PE, Loubet JL. Normal and lateral modulation with a scanning force microscope, an analysis: implication in quantitative elastic and friction imaging. Tribology Letters. 1999;7(4):199-212. [Link] [DOI:10.1023/A:1019142025011]
Chong AC, Lam DCC. Strain gradient plasticity effect in indentation hardness of polymers. Journal of Materials Research. 1999;14(10):4103-4110. [Link] [DOI:10.1557/JMR.1999.0554]
Eringen AC. Linear theory of nonlocal elasticity and dispersion of plane waves. International Journal of Engineering Science. 1972;10(5):425-435. [Link] [DOI:10.1016/0020-7225(72)90050-X]
Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics. 1983;54(9):4703-4710. [Link] [DOI:10.1063/1.332803]
Reddy JN. Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science. 2007;45(2-8):288-307. [Link] [DOI:10.1016/j.ijengsci.2007.04.004]
Murmu T, Pradhan S. Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory. Physica E: Low-dimensional Systems and Nanostructures. 2009;41(8):1451-1456. [Link] [DOI:10.1016/j.physe.2009.04.015]
Mir M, Tahani M. Chaotic behavior of nonlocal nanobeam resting on a nonlinear viscoelastic foundation subjected to harmonic excitation. Modares Mechanical Engineering. 2018;18(2):264-272. [Persian] [Link]
Yang F, Chong A, Lam DCC, Tong P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures. 2002;39(10):2731-2743. [Link] [DOI:10.1016/S0020-7683(02)00152-X]
Lam DCC, Yang F, Chong ACM, Wang J, Tong P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids. 2003;51(8):1477-1508. [Link] [DOI:10.1016/S0022-5096(03)00053-X]
Kong S, Zhou S, Nie Z, Wang K. The size-dependent natural frequency of Bernoulli-Euler micro-beams. International Journal of Engineering Science. 2008;46(5):427-437. [Link] [DOI:10.1016/j.ijengsci.2007.10.002]
Xia W, Wang L, Yin L. Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration. International Journal of Engineering Science. 2010;48(12):2044-2053. [Link] [DOI:10.1016/j.ijengsci.2010.04.010]
Kahrobaiyan MH, Asghari M, Rahaeifard M, Ahmadian MT. A nonlinear strain gradient beam formulation. International Journal of Engineering Science. 2011;49(11):1256-1267. [Link] [DOI:10.1016/j.ijengsci.2011.01.006]
Ghayesh MH, Farokhi H, Amabili M. In-plane and out-of-plane motion characteristics of microbeams with modal interactions. Composites Part B: Engineering. 2014;60:423-439. [Link] [DOI:10.1016/j.compositesb.2013.12.074]
Andakhshideh A, Maleki S, Karamad H. Size-dependent nonlinear vibration of non-uniform microbeam with various boundary conditions. Modares Mechanical Engineering. 2019;18(9):189-198. [Persian] [Link]
Thai HT, Vo TP, Nguyen TK, Kim SE. A review of continuum mechanics models for size-dependent analysis of beams and plates. Composite Structures. 2017;177:196-219. [Link] [DOI:10.1016/j.compstruct.2017.06.040]
Eltaher MA, Khater ME, Emam SA. A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Applied Mathematical Modelling. 2016;40(5-6):4109-4128. [Link] [DOI:10.1016/j.apm.2015.11.026]
Farshidianfar A, Mahdavi MH, Dalir H. Flexural vibration of atomic force microscope cantilever with dimensional effects. Amirkabir Journal of Mechanical Engineering. 2009;41(1):19-26. [Persian] [Link]
Rützel S, Lee SI, Raman A. Nonlinear dynamics of atomic-force-microscope probes driven in Lennard-Jones potentials. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences. 2003;459(2036):1925-1948. [Link] [DOI:10.1098/rspa.2002.1115]
Pishkenari HN, Behzad M, Meghdari A. Nonlinear dynamic analysis of atomic force microscopy under deterministic and random excitation. Chaos, Solitons & Fractals. 2008;37(3):748-762. [Link] [DOI:10.1016/j.chaos.2006.09.079]
Morita S, Giessibl FJ, Meyer E, Wiesendanger R, editors. Noncontact atomic force microscopy. Volume 3. Switzerland: Springer; 2015. [Link] [DOI:10.1007/978-3-319-15588-3]
Bueno AM, Balthazar JM, Piqueira JRC. Phase-locked loop application to frequency modulation-atomic force microscope. Communications in Nonlinear Science and Numerical Simulation. 2011;16(9):3835-3843. [Link] [DOI:10.1016/j.cnsns.2010.12.018]
Rezaie B, Nikoo SY, Rahmani Z. A novel intelligent fast terminal sliding mode control for a class of nonlinear systems: application to atomic force microscope. International Journal of Dynamics and Control. 2018;6(3):1335-1350. [Link] [DOI:10.1007/s40435-017-0376-9]
Karami Mohammadi A, Abbasi M. Vibration analysis of an AFM microcantilever with sidewall and top surface probes based on the couple stress theory. Amirkabir Journal of Mechanical Engineering. 2016;48(2):137-146. [Persian] [Link]
Karami Mohammadi A, Abbasi M. Nonlinear vibration analysis of a dynamic atomic force microscope microcantilever in the tapping mode based on the modified couple stress theory. Modares Mechanical Engineering. 2015;14(11):9-17. [Persian] [Link]
Molavian Jazi M, Ghayour M, Ziaei-Rad S, Miandoab EM. Effect of size on the dynamic behaviors of atomic force microscopes. Microsystem Technologies. 2018;24(4):1755-1765. [Link] [DOI:10.1007/s00542-017-3698-9]
Mohammadi MA, Yousefi Koma A, Karimpour M, Maani Miandoab E. Dynamic behavior analysis of atomic force microscope based on gradient theory. Modares Mechanical Engineering. 2016;16(9):155-164. [Persian] [Link]
Saeedi B, Vatankhah R. Nonlinear dynamic analysis of an atomic force microscope submerged in liquid based on strain gradient theory. Modares Mechanical Engineering. 2018;17(12):275-285. [Persian] [Link]
Nayfeh AH, Mook DT. Nonlinear oscillations. Birkach: John Wiley & Sons; 2008. [Link]
Poursamad A, Davaie-Markazi AH. Robust adaptive fuzzy control of unknown chaotic systems. Applied Soft Computing. 2009;9(3):970-976. [Link] [DOI:10.1016/j.asoc.2008.11.014]
Rao SS. Vibration of continuous systems. Hoboken: John Wiley & Sons; 2007. [Link]
Rützel S, Lee SI, Raman A, editors. Nonlinear dynamics of atomic-force-microscope probes driven in Lennard-Jones potentials. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2003;459(2036):1925-1948. [Link] [DOI:10.1098/rspa.2002.1115]
Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena. 1985;16(3):285-317. [Link] [DOI:10.1016/0167-2789(85)90011-9]