مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تاثیر فرآوری اصطکاکی اغتشاشی بر ریزساختار و خواص مکانیکی کامپوزیت A390/SiC: اثر نسبت قطر شانه به پین و تعداد پاس

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه مهندسی مواد، دانشکده مهندسی مواد و صنایع، دانشگاه صنعتی نوشیروانی، بابل، ایران
چکیده
در فرآیند ریخته‌گری متداول حضور تخلخل در ساختار اجتناب‌ناپذیر است. روش ریخته‌گری نیمه‌جامد یکی از فرآیندهای مناسب برای تولید کامپوزیت است. انجام فرآیند اصطکاکی اغتشاشی به عنوان فرآیند تکمیلی سبب اصلاح ریزساختار و توزیع مناسب ذرات تقویت‌کننده در زمینه می‌شود. لذا در این تحقیق از فرآیند اصطکاکی اغتشاشی برای بهبود خواص کامپوزیت ۱۰%wtSiC/A۳۹۰ استفاده شد. فرآیند اصطکاکی اغتشاشی در سرعت دورانی و خطی به ترتیب rpm۸۰۰ و mm/min۴۰ انجام شد. از سه نسبت قطر شانه به قطر پین (D/d) برابر با ۲، ۲/۵ و ۳ استفاده شد که هرکدام از نسبت‌ها در یک تا سه پاس فرآوری شدند. از میکروسکوپ نوری و الکترونی برای بررسی ریزساختار مقطع نمونه‌های فرآوری شده استفاده شد. داده‌های ریزساختاری و ارتباط دادن آن به نتایج حاصل از آزمون سختی و کشش موجب دستیابی به پارامتر مطلوب شد. نتایج نشان داد که فرآیند اصطکاکی اغتشاشی موجب اصلاح ریزساختار شامل تغییر اندازه و توزیع ذرات SiC و سیلسیم اولیه به همراه تغییر اندازه دانه آلومینیم می‌شود. توزیع یکنواخت ذرات از یک طرف و کاهش اندازه دانه آلومینیم از طرف دیگر برای تعیین پارامتر مطلوب موثر است. بالاترین استحکام وچقرمگی در در نسبت D/d برابر ۲/۵ و در پاس سوم به ترتیب برابر MPa۲۶۰ وMJ/m۳۱۰/۸ به دست آمد. همچنین اندازه متوسط ذرات SiC، سیلیسیم و دانه‌های آلومینیم در پارامتر مطلوب به ترتیب برابر ۲/۹۸، ۱۴/۹۸و ۱۶/۳۰ میکرومتر به دست آمد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of Friction Stir Processing On Microstructure and Mechanical Properties of the A390/Sic Composite: The Effect of Shoulder Diameter to Pin Diameter Ratio and Number of Passes

نویسندگان English

J. Mohamadi Gangaraj
S. Nourouzi
H. Jamshidi Aval
Materials Engineering Department, Materials & Industries Engineering Faculty, Noshirvani University of Technology, Babol, Iran
چکیده English

In the conventional casting process, the presence of porosity in the structure is inevitable. Compocasting method is one of the processes for composite production. Performing friction stir processing as a complementary process will modify the microstructure and good distribution of reinforcing particles in the matrix. Therefore, in this study, friction stir processing was used to improve the composite properties of A390 / 10wt% SiC composites. The FSP process was performed at rotational and traveling speeds of 800rpm and 40 mm / min, respectively. Three ratios of shoulder diameter to pin diameter (D/d) of 2, 2.5 and 3 were used, each of them was processed in one to three passes. An optical microscope (OM) was used to examine the microstructure of the processed samples. Microstructural data and its association with the results of the hardness and tensile test yielded the desired parameter. The results showed that FSP modifies the microstructure including resizing and distribution of SiC particles, primary silicon as well as changes the grain size of aluminum. The uniform distribution of particles on one side and the reduction of the grain size of aluminum, on the other hand, is effective in determining the desired parameter. The highest strength and toughness in the D/d ratio was 2.5 and in the third pass were 260MPa and 10.8M J/m3, respectively. Also, the average particle size of SiC, silicon and aluminum grains in the optimum parameter were 2.98, 14.98 and 16.3 μm, respectively.

کلیدواژه‌ها English

Friction stir processing
Composite
A390 Aluminum Alloy
SiC
1- Huang G, Hou W, Shen Y. Evaluation of the microstructure and mechanical properties of WC particle reinforced aluminum matrix composites fabricated by friction stir processing. Materials Characterization. 2018;138:26-37. [Link] [DOI:10.1016/j.matchar.2018.01.053]
Huang G, Shen Y, Guo R, Guan W. Fabrication of tungsten particles reinforced aluminum matrix composites using multi-pass friction stir processing: Evaluation of microstructural, mechanical and electrical behavior. Materials Science and Engineering: A. 2016;674:504-513. [Link] [DOI:10.1016/j.msea.2016.07.124]
Hoziefa W, Toschi S, Ahmed MM, Morri A, Mahdy AA, Seleman ME, et al. Influence of friction stir processing on the microstructure and mechanical properties of a compocast AA2024-Al2O3 nanocomposite. Materials & Design. 2016;106:273-284. [Link] [DOI:10.1016/j.matdes.2016.05.114]
Sajjadi SA, Ezatpour HR, Torabi Parizi M. Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Materials & Design. 2012;34:106-111. [Link] [DOI:10.1016/j.matdes.2011.07.037]
Mahmoud TS. Surface modification of A390 hypereutectic Al-Si cast alloys using friction stir processing. Surface and Coatings Technology. 2013;228:209-220. [Link] [DOI:10.1016/j.surfcoat.2013.04.031]
Cartigueyen S, Mahadevan K. Role of friction stir processing on copper and copper based particle reinforced composites-a review. Journal of Materials Science & Surface Engineering. 2015;2(2):133-145. [Link]
Węglowski MS. Friction stir processing-state of the art. Archives of Civil and Mechanical Engineering. 2018;18(1):114-129. [Link] [DOI:10.1016/j.acme.2017.06.002]
Akramifard HR, Shamanian M, Sabbaghian M, Esmailzadeh M. Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing. Materials & Design (1980-2015). 2014;54:838-844. [Link] [DOI:10.1016/j.matdes.2013.08.107]
Vijayavel P, Balasubramanian V, Sundaram S. Effect of shoulder diameter to pin diameter (D/d) ratio on tensile strength and ductility of friction stir processed LM25AA-5% SiCp metal matrix composites. Materials & Design. 2014;57:1-9. [Link] [DOI:10.1016/j.matdes.2013.12.008]
Khan NZ, Khan ZA, Siddiquee AN. Effect of shoulder diameter to pin diameter (D/d) ratio on tensile strength of friction stir welded 6063 aluminium alloy. Materials Today: Proceedings. 2015;2(4-5):1450-1457. [Link] [DOI:10.1016/j.matpr.2015.07.068]
Chen Y, Ding H, Malopheyev S, Kaibyshev R, Cai ZH, Yang WJ. Influence of multi-pass friction stir processing on microstructure and mechanical properties of 7B04-O Al alloy. Transactions of Nonferrous Metals Society of China. 2017;27(4):789-796. [Link] [DOI:10.1016/S1003-6326(17)60090-6]
Yang R, Zhang Z, Zhao Y, Chen G, Guo Y, Liu M, et al. Effect of multi-pass friction stir processing on microstructure and mechanical properties of Al3Ti/A356 composites. Materials Characterization. 2015;106:62-69. [Link] [DOI:10.1016/j.matchar.2015.05.019]
Ahmadifard S, Momeni A. Fabrication of Al 2024-boron carbide surface nano composite by friction stir processing. Modares Mechanical Engineering. 2017;17(8):343-350. [Persian] [Link]
Eskandari H, Taheri R, Khodabakhshi F. Friction-stir processing of an AA8026-TiB2-Al2O3 hybrid nanocomposite: Microstructural developments and mechanical properties. Materials Science and Engineering: A. 2016;660:84-96. [Link] [DOI:10.1016/j.msea.2016.02.081]
Zhang YN, Cao X, Larose S, Wanjara P. Review of tools for friction stir welding and processing. Canadian Metallurgical Quarterly. 2012;51(3):250-261. [Link] [DOI:10.1179/1879139512Y.0000000015]
Yakaboylu GA, Sabolsky EM. Determination of a homogeneity factor for composite materials by a microstructural image analysis method. Journal of Microscopy. 2017;266(3):263-272. [Link] [DOI:10.1111/jmi.12536]
Ashjari M, Mostafapour Asl A, Rouhi S. Experimental investigation on the effect of process environment on the mechanical properties of AA5083/Al2O3 nanocomposite fabricated via friction stir processing. Materials Science and Engineering: A. 2015;645:40-46. [Link] [DOI:10.1016/j.msea.2015.07.093]
Saini N, Dwivedi DK, Jain PK, Singh H. Surface modification of cast Al-17% Si alloys using friction stir processing. Procedia Engineering. 2015;100:1522-1531. [Link] [DOI:10.1016/j.proeng.2015.01.524]
Dolatkhah A, Golbabaei P, Besharati Givi M, Molaiekiya F. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Materials & Design. 2012;37:458-464. [Link] [DOI:10.1016/j.matdes.2011.09.035]
Dadashpour M, Mostafapour A, Yeşildal R, Rouhi S. Effect of process parameter on mechanical properties and fracture behavior of AZ91C/SiO2 composite fabricated by FSP. Materials Science and Engineering: A. 2016;655:379-387. [Link] [DOI:10.1016/j.msea.2015.12.103]
Sathiskumar R, Murugan N, Dinaharan I, Vijay SJ. Prediction of mechanical and wear properties of copper surface composites fabricated using friction stir processing. Materials & Design. 2014;55:224-234. [Link] [DOI:10.1016/j.matdes.2013.09.053]
Vijayavel P, Balasubramanian V. Effect of pin profile volume ratio on microstructure and tensile properties of friction stir processed aluminum based metal matrix composites. Journal of Alloys and Compounds. 2017;729:828-842. [Link] [DOI:10.1016/j.jallcom.2017.09.117]
Dinaharan I. Influence of ceramic particulate type on microstructure and tensile strength of aluminum matrix composites produced using friction stir processing. Journal of Asian Ceramic Societies. 2016;4(2):209-218. [Link] [DOI:10.1016/j.jascer.2016.04.002]