مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

پایش وضعیت مبتنی بر آنالیز ارتعاشات برای تشخیص خرابی اجزای یاتاقان غلتشی، نمونه موردی: الکتروموتور فن آسیای مواد خام

نوع مقاله : پژوهشی کوتاه

نویسندگان
1 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان، کرمان، ایران
2 گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه خیام، مشهد، ایران
3 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، واحد بیرجند، دانشگاه آزاد اسلامی، بیرجند، ایران
چکیده
در این پژوهش، نمونه‌ای از نتایج بدست آمده از ترکیب برنامه پایش وضعیت مبتنی بر آنالیز ارتعاشات و رویکرد تحلیل علل ریشه‌ای خرابی در خصوص یاتاقان استوانه‌ای الکتروموتور آسیای مواد خام یک کارخانه سیمان، ارائه شده است. با ثبت گزارشات بازرسان مبنی ‌بر انتشار صدای غیرعادی از یاتاقان اشاره شده، تحلیل داده‌های ارتعاشی ثبت شده در برنامه پایش وضعیت تجهیز نشان دهنده تغییر دامنه‌ی ارتعاشات و افزایش محسوس شاخص وضعیت یاتاقان مذکور بوده است. با تطابق فرکانس‌ ارتعاشات با فرکانس خرابی اجزاءی یاتاقان غلتشی مذکور، خرابی قفسه یاتاقان پیش‌بینی شده که پس از بازدید از الکتروموتور و مشاهده وضعیت یاتاقان، کشف علت ریشه‌ای خرابی در دستور کار قرار می‌گیرد. لذا پس از بررسی علل ریشه‌ای خرابی در یاتاقان‌ مشخص گردید، تیپ یاتاقان بکار رفته در الکتروموتور توسط سازنده الکتروموتور باتوجه به مشخصات بهره‌برداری آن انتخاب مناسبی نبوده و همچنین بازه‌ی زمانی روانکاری دوره­ای پیشنهاد شده ، با نوع قفسه یاتاقان مربوطه مغایرت داشته و منجر به خرابی زودرس آن شده­است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Condition Monitoring Based on Vibration Analysis for Defect Diagnosis of Rolling Element Bearing (Case Study: Mill Fan Electro Motor)

نویسندگان English

H. Gholamzade Sani 1
E. Barati 2
A. Rezaei 3
M. Rafati Zarkak 2
1 Mechanical Engineering Department, Engineering Faculty, Shahid Bahonar University of Kerman, Kerman, Iran
2 Mechanical Engineering Department, Engineering Faculty, Khayyam University, Mashhad, Iran
3 Mechanical Engineering Department, Engineering Faculty, Birjand Branch, Islamic Azad University, Birjand, Iran
چکیده English

In this study, an example of the results obtained from the combination of the vibration monitoring program and the root cause analysis approach for the electromotor roller element bearings of the cement factory’s mill fan has been presented and examined. By registering the inspectors' reports on the release of abnormal sound from the bearings, the vibration data recorded in the monitoring program were equipped and, by carefully checking the vibration trends of the machine, sensible increase in the bearing condition index (BC) have seen. By matching the fault frequency with the frequency elements of the roller bearing, predicted is failure in the bearing' cage, which will be verified by visited and reviewed. The detect of the root cause of the failure is on the agenda for this purpose, paid investigated the causes of failure in the bearings and due to the inspection history, finally specified the use of the bearing is not suitable due to the velocity factor, as well as the factors of the lubrication interval and the amount of lubrication charged can be explained by the reasons for failure in the machine.

کلیدواژه‌ها English

maintenance
Condition Monitoring
Vibration analysis
Root Cause Failure Analysis
Lubrication
Electro motor
1- Delvecchio S, Bonfiglio P, Pompoli F. Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques. Mechanical Systems and Signal Processing. 2018;99:661-683. [Link] [DOI:10.1016/j.ymssp.2017.06.033]
Laissaoui A, Bouzouane B, Miloudi A, Hamzaoui N. Perceptive analysis of bearing defects (Contribution to vibration monitoring). Applied Acoustics. 2018;140:248-255. [Link] [DOI:10.1016/j.apacoust.2018.06.004]
Betta G, Liguori C, Paolillo A, Pietrosanto A. A DSP-based FFT-analyzer for the fault diagnosis of rotating machine based on vibration analysis. IEEE Transactions on Instrumentation and Measurement. 2002;51(6):1316-1322. [Link] [DOI:10.1109/TIM.2002.807987]
Renwick JT, Babson PE. Vibration analysis- a proven technique as a predictive maintenance tool. IEEE Transactions on Industry Applications. 1985;21(2):324-332. [Link] [DOI:10.1109/TIA.1985.349652]
Alguindigue IE, Loskiewicz-Buczak A, Uhrig RE. Monitoring and diagnosis of rolling element bearings using artificial neural networks. IEEE Transactions on Industrial Electronics. 1993;40(2):209-217. [Link] [DOI:10.1109/41.222642]
Orhan S, Aktürk N, Celik V. Vibration monitoring for defect diagnosis of rolling element bearings as a predictive maintenance tool: Comprehensive case studies. NDT & E International. 2006;39(4):293-298. [Link] [DOI:10.1016/j.ndteint.2005.08.008]
Peeters C, Guillaume P, Helsen J. Vibration-based bearing fault detection for operations and maintenance cost reduction in wind energy. Renewable Energy. 2018;116(Part B):74-87. [Link] [DOI:10.1016/j.renene.2017.01.056]
Karabay S, Uzman I. Importance of early detection of maintenance problems in rotating machines in management of plants: Case studies from wire and tyre plants. Engineering Failure Analysis. 2009;16(1):212-224. [Link] [DOI:10.1016/j.engfailanal.2008.03.003]
Govardhan T, Choudhury A, Paliwal D. Vibration analysis of dynamically loaded bearing with distributed defect based on defect induced excitation. International Journal of Dynamics and Control. 2018;6(2):499-510. [Link] [DOI:10.1007/s40435-017-0324-8]
Danesh M, Khalili K. Tool wear condition monitoring using time-frequency marginal integral of motor current signal. Modares Mechanical Engineering. 2015;14(16):181-189. [Persian] [Link]
Wang YF, Kootsookos PJ. Modeling of low shaft speed bearing faults for condition monitoring. Mechanical Systems and Signal Processing. 1998;12(3):415-426. [Link] [DOI:10.1006/mssp.1997.0149]
Kıral Z, Karagülle H. Vibration analysis of rolling element bearings with various defects under the action of an unbalanced force. Mechanical Systems and Signal Processing. 2006;20(8):1967-1991. [Link] [DOI:10.1016/j.ymssp.2005.05.001]
Howard I. A review of rolling element bearing vibration detection, diagnosis and prognosis [Internet]. Melbourne: Defence Science and Technology Organization Canberra; 1994 [cited 2019 March 21]. Available from: https://bit.ly/2ktUudf [Link]
Rezaee V, Saiedi S. Analysis and interpretation of rotary machine. 1st Edition. Tehran: Ketab Daneshgahi Publishing; 2011. [Persian] [Link]
SKF Group. SKF bearing maintenance handbook. Gothenburg: SKF; 2010. [Link]
SKF Group. SKF general catalogue. 3rd Edition. Gothenburg: SKF; 2003. [Link]
Schaeffler. Rolling bearing damage, recognition of damage and bearing inspection. Germany: Schaeffler Technologies AG & Co. KG; 2010. [Link]