مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تاثیر سرعت و دامنه حرکت در محاسبه ضرایب هیدرودینامیکی شناور زیرسطحی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه دریا، دانشکده مهندسی مکانیک، دانشگاه صنعتی مالک اشتر، شاهین‌شهر، ایران
2 گروه دریا، دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران، ایران
3 گروه آیرودینامیک، پیشرانش و تبدیل انرژی، دانشکده مهندسی مکانیک، دانشگاه صنعتی مالک اشتر، شاهین-شهر، ایران
چکیده
ضرایب هیدرودینامیکی در تعیین مانور متحرک­های دریایی از اهمیت اولیه برخوردار است. استفاده از روش‌های دینامیک سیالات محاسباتی با توجه به هزینه کمتر این روش‌ها در مقایسه با روش‌های آزمایشگاهی در تعیین ضرایب هیدرودینامیکی، همواره مورد توجه بوده است. اعتبارسنجی این روش‌ها و افزایش دقت در کاربرد آن امروزه از مباحث اصلی در روش‌های دینامیک سیالات محاسباتی برای شناورهای زیرسطحی است. با استفاده از نرم‌افزار استار سی‌سی‌ام و بهره‌گیری از مش دینامیک اورست، ضرایب هیدرودینامیکی یک زیرسطحی متقارن بیضیگون،‌ محاسبه و اثر پارامترهای سرعت و دامنه حرکت جسم مورد بررسی قرار گرفته است. نتایج حاصل از شبیه‌سازی‌ها مورد مقایسه و تحلیل قرار گرفته و معیارهای کاهش خطا در خصوص ابعاد دامنه و مقدار سرعت در شبیه‌سازی ارائه شده است. همچنین یک روش ابداعی برای محاسبه همزمان ضرایب هیدرودینامیکی حرکت سرج ارائه شده است که با مقایسه نتایج با داده‌های تئوری و آزمایشگاهی دقت مناسبی را نشان می‌دهد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of Motion Domain and Velocity on Calculation of Underwater Vehicle Coefficients

نویسندگان English

S. Ardeshiri 1
S.H. Mousavizadegan 2
S. Kheradmad 3
1 Marine Engineering Department, Mechanical Engineering Faculty, Malek-Ashtar University of Technology, Shahinshahr, Iran
2 Maritime Department, Maritime Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
3 Aerodynamic, Propulsion & Energy Conversion Department, Mechanical Engineering Faculty, Malek-Ashtar University of Technology, Shahinshahr, Iran
چکیده English

Hydrodynamic coefficients have primary importance in determining the maneuvering characteristic of a marine vehicle. The use of computational fluid dynamics (CFD) methods due to the lower cost of these methods compared to laboratory methods in determination of hydrodynamic coefficients have always been considered. Validation of the CFD methods and enhancing their accuracy are the major topics in the application of CFD for the underwater vehicle. The hydrodynamic coefficients of an elliptical-shape underwater vehicle and the effect of motion amplitude and velocity parameters have been investigated by the STAR-CCM+ software and through dynamic overset meshing. The results of the simulations have been compared and analyzed and the error reduction criteria have been presented considering the amplitude dimensions and velocity values in the simulation. In addition, an innovative method for simultaneous calculation of hydrodynamic coefficients of surge motion has been presented which shows good accuracy by comparing the results with theoretical and laboratory data.

کلیدواژه‌ها English

Hydrodynamic Coefficients
Surge Coefficients
Velocity
Amplitude
Underwater
Overset Mesh
Abkowitz MA. Stability and motion control of ocean vessels. Cambridge: MIT Press; 1969. [Link]
Zhang H, Xu YR, Cai HP. Using CFD software to calculate hydrodynamic coefficients. Journal of Marine Science and Application. 2010;9(2):149-155. [Link] [DOI:10.1007/s11804-010-9009-9]
Nazir Z, Su YM, Wang ZL. A CFD based investigation of the unsteady hydrodynamic coefficients of 3-D fins in viscous flow. Journal of Marine Science and Application. 2010;9(3):250-255. [Link] [DOI:10.1007/s11804-010-1003-8]
Pan YC, Zhang HX, Zhou QD. Numerical prediction of submarine hydrodynamic coefficients using CFD simulation. Journal of Hydrodynamics, Ser. B. 2012;24(6):840-847. [Link] [DOI:10.1016/S1001-6058(11)60311-9]
Xu F, Zou ZJ, Yin JC, Cao J. Parametric identification and sensitivity analysis for autonomous underwater vehicles in diving plane. Journal of Hydrodynamics. 2012;24(5):744-751. [Link] [DOI:10.1016/S1001-6058(11)60299-0]
Mansoorzadeh Sh, Pishevar AR, Javanmard E. Numerical investigation of dynamic stability of an AUV. Fluid Mechanic and Aerodynamic. 2013;2(1):69-81. [Persian] [Link]
Pan YC, Zhou QD, Zhang HX. Numerical simulation of rotating arm test for prediction of submarine rotary derivatives. Journal of Hydrodynamics. 2015;27(1):68-75. [Link] [DOI:10.1016/S1001-6058(15)60457-7]
Javanmard E, Mansoorzadeh Sh, Pishevar AR. A numerical and experimental investigation of effect of control surface angle on an autonomous underwater vehicle drag. Modares Mechanical Engineering. 2015;14(16):358-366. [Persian] [Link]
Nouri NM, Mostafapour K, Habibi Sooha Y, Hassanpour SH. Investigation of hydrodynamic derivatives of an AUV based on the water tunnel testing maneuvers. Journal of Marine Engineering. 2017;13(25):67-75. [Persian] [Link]
Hajivand A, Hasani M, Babaie M, Sadeghian M. Calculation of AUV hydrodynamic coefficients using computational fluid dynamic. Journal of Marine Technology. 2016;3(1):36-46. [Persian] [Link]
Shojaeefard MH, Khorampanahi A, Mirzaei M. Numerical investigation of oscillation frequency and amplitude effects on the hydrodynamic coefficients of a body with NACA0012 hydrofoil section. Journal of Mechanical Science and Technology. 2017;31(5):2251-2260. [Link] [DOI:10.1007/s12206-017-0422-8]
Constantinescu GS, Pasinato H, Wang YQ, Forsythe JR, Squires KD. Numerical investigation of flow past a prolate spheroid. Journal of Fluids Engineering. 2002;124(4):904-910. [Link] [DOI:10.1115/1.1517571]
Fossen TI, Sagatun SI. Adaptive control of nonlinear systems: A case study of underwater robotic systems. Journal of Robotic Systems. 1991;8(3):393‐412. [Link] [DOI:10.1002/rob.4620080307]
Fossen TI, Fjellstad O. Nonlinear modelling of marine vehicles in 6 degrees of freedom. International Journal of Mathematical Modeling of Systems. 1995;1(1):17‐27. [Link] [DOI:10.1080/13873959508837004]
Goodman A. Experimental techniques and methods of analysis used in submerged body research. The 3rd Symposium on Naval Hydrodynamics, 1960 September 17-24, Scheveningen. Washington: National Academy Press; 1960. pp. 379-449. [Link]
Gertler M. The DTMB planar- motion-mechanism system (PMM). Zagreb: Defense Technical Information Center; 1967. [Link] [DOI:10.21236/AD0659053]
Sen DT, Vinh TC. Determination of added mass and inertia moment of marine ships moving in 6 degrees of freedom. International Journal of Transportation Engineering and Technology. 2016;2(1):8-14. [Link]
Lamb H. Hydrodynamics. 6th Edition. New York: Dover Publications; 1945. [Link]
Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J. A new k-epsilon eddy viscosity model for high Reynolds number turbulent flows: Model development and validation. Computers & Fluids. 1995;24(3):227-238. [Link] [DOI:10.1016/0045-7930(94)00032-T]
Launder BE, Spalding DB. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering. 1974;3(2):269-289. [Link] [DOI:10.1016/0045-7825(74)90029-2]
Roache PJ. Perspective: A method for uniform reporting of grid refinement studies. Journal of Fluids Engineering. 1994;116(3):405-413. [Link] [DOI:10.1115/1.2910291]
Roache PJ. Verification of codes and calculations. AIAA Journal. 1998;36(5):696-702. [Link] [DOI:10.2514/2.457]
Roache PJ. Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics. 1997;29(1):123-160. [Link] [DOI:10.1146/annurev.fluid.29.1.123]
Andersson HI, Jiang F. Forces and torques on a prolate spheroid: Low-Reynolds-number and attack angle effects. Acta Mechanica. 2019;230(2):431-447. [Link] [DOI:10.1007/s00707-018-2325-x]