مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تولید هیدروژن با استفاده از یک چرخه پیشنهادی از چاه‌های زمین گرمایی سبلان توسط الکترولایزر غشای پروتونی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه، ایران
2 گروه مهندسی مکانیک، دانشکده فنی و مهندسی خوی، دانشگاه ارومیه، ارومیه، ایران
چکیده
در این بررسی یک چرخه ترکیبی جدید (شامل تبخیر آنی دو مرحله‌ای، چرخه‌ی کالینا و مبدل غشای پروتونی) از چاه‌های زمین گرمایی سبلان برای تولید همزمان توان و هیدروژن پیشنهاد شده و مورد تحلیل انرژی و اگزرژی قرار گرفته است. در ادامه اثر پارامترهای مهم از جمله فشار جداساز اول و دوم تبخیر آنی، حداقل اختلاف دمای نقطه تنگش، فشار بالای چرخه کالینا، فوق گرم کردن سیال زمین گرمایی، نسبت توان مصرف شده برای تولید هیدروژن و دمای محیط بر مقدار هیدروژن تولیدی، توان خالص تولیدی، بازده حرارتی و اگزرژی چرخه ترکیبی پیشنهادی مورد مطالعه قرار گرفته است. نتایج نشان می‌دهند که برای حالت مورد بررسی در چرخه ترکیبی پیشنهادی هیدروژن تولیدی ۱۵۳۶کیلوگرم بر ساعت، توان خالص ۱۲/۸۳مگاوات، بازده انرژی ۱۱/۳۹% و بازده اگزرژی ۴۳/۶۴% به دست آمده است. همچنین نتایج نشان می‌دهند که افزایش فشار جداسازها در افزایش تولید هیدروژن بی‌تاثیر بوده در حالی که با افزایش فشارجداساز اول و افزایش فشار جداساز دوم تا فشار بهینه، بازده حرارتی و اگزرژی افزایش می‌یابند. با افزایش دمای الکترولایزر غشای پروتونی، دبی هیدروژن تولیدی افزایش پیدا کرده و باعث می‌شود ضمن ثابت‌ماندن کار خالص چرخه، بازده حرارتی و اگزرژی افزایش یابند، همچنین در یک نقطه بهینه برای فشار بالای کالینا، بیشترین مقدار هیدروژن تولیدی به دست آمده است. در این بررسی بیشترین مقدار تخریب اگزرژی به ترتیب برای الکترولایزر غشای پروتونی، اواپراتور و کندانسور ۲ حاصل شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Hydrogen Production Using Proposed Cycle from Sabalan Geothermal Wells via Proton Exchange Membrane Electrolysis

نویسندگان English

M. Abdolalipouradl 1
Sh. Khalilarya 1
F. Mohammadkhani 2
1 Mechanical Engineering Department, Engineering Faculty, Urmia University, Urmia, Iran
2 Mechanical Engineering Department, Engineering Faculty of Khoy, Urmia University, Urmia, Iran
چکیده English

In the present study, a new combined cycle (including a two-step flash evaporation, the Kalina cycle, and a proton-exchange membrane) for simultaneous power and hydrogen generation from Sabalan geothermal wells has been proposed and analyzed from the viewpoints of energy and exergy. The effects of important parameters including separators pressure of flash evaporation, the minimum temperature difference in the pinch point, Kalian higher pressure, superheated geothermal fluid, the ratio of consumed power for hydrogen production and dead state temperature on the amount of produced hydrogen, the net generating power, thermal and exergy efficiencies of the proposed combined cycle have been studied. The results show that for the investigated case in the proposed combined cycle, the amount of the produced hydrogen, net generating power and energy, and exergy efficiency were 1536kg/hr, 12.83MV, 11.39% and 43.64%, respectively. Increasing the pressure of the separators was not effective in increasing hydrogen production, while with increasing the first separator pressure, as well as, the second separator pressure to the optimum pressure, the thermal and exergy efficiency increase. With increasing the temperature of the proton membrane electrolyzer, the produced hydrogen discharge increases and while maintaining cycle net output power, thermal and exergy efficiencies increase. Also, at the optimum point for high-pressure Kalina, the maximum amount of hydrogen production is obtained. The highest amount of exergy degradation was obtained for the protonated membrane electrolyzer, evaporator and condenser 2, respectively.

کلیدواژه‌ها English

Sabalan Geothermal Power Plant
Proton-Exchange Membrane Electrolysis
Hydrogen production
Kalina cycle
Energy and Exergy Analayses
Mosaffa AH, Zareei A. Proposal and thermoeconomic analysis of geothermal flash binary power plants utilizing different types of organic flash cycle. Geothermics. 2018;72:47-63. [Link] [DOI:10.1016/j.geothermics.2017.10.011]
Yari M. Exergetic analysis of various types of geothermal power plants. Renewable Energy. 2010;35(1):112-121. [Link] [DOI:10.1016/j.renene.2009.07.023]
Badr O, O'Callaghan PW, Probert SD. Rankine-cycle systems for harnessing power from low-grade energy sources. Applied Energy. 1990;36(4):263-292. [Link] [DOI:10.1016/0306-2619(90)90002-U]
Lin D, Zhu Q, Li X. Thermodynamic comparative analyses between (organic) Rankine cycle and Kalina cycle. Energy Procedia. 2015;75:1618-1623. [Link] [DOI:10.1016/j.egypro.2015.07.385]
Hettiarachchi HDM, Golubovic M, Worek WM, Ikegami Y. The performance of the Kalina Cycle System 11(KCS-11) with low-temperature heat sources. Journal of Energy Resources Technology. 2007;129(3):243-247. [Link] [DOI:10.1115/1.2748815]
Jalilinasrabady S, Itoi R, Valdimarsson P, Saevarsdottir G, Fujii H. Flash cycle optimization of Sabalan geothermal power plant employing exergy concept. Geothermics. 2012;43:75-82. [Link] [DOI:10.1016/j.geothermics.2012.02.003]
Aali A, Pourmahmood N, Zare V. Proposal and analysis of a new cycle for power generation from Sabalan geothermal wells. Journal of Mechanical Engineering of Tabriz University. 2017;47(3):139-147. [Persian] [Link]
Aali A, Pourmahmood N, Zare V. Exergy analysis of a new proposed cycle for power generation from sabalan geothermal wells. Journal of Mechanical Engineering of Tabriz University. 2018;48(1):251-260. [Persian] [Link]
Aali A, Pourmahmood N, Zare V. Exergoeconomic analysis and multi-objective optimization of a novel combined flash-binary cycle for Sabalan geothermal power plant in Iran. Energy Conversion and Management. 2017;143:377-390. [Link] [DOI:10.1016/j.enconman.2017.04.025]
Abdolalipouradl M, Khalilarya S, Jafarmadar S. Exergy analysis of a new proposal combined cycle from Sabalan geothermal source. Modares Mechanical Engineering. 2018;18(4):11-22. [Persian] [Link]
Ozgur T, Yakaryılmaz AC. A review: Exergy analysis of PEM and PEM fuel cell based CHP systems. International Journal of Hydrogen Energy. 2018;43(38):17993-8000. [Link] [DOI:10.1016/j.ijhydene.2018.01.106]
Orhan MF, Babu BS. Investigation of an integrated hydrogen production system based on nuclear and renewable energy sources: Comparative evaluation of hydrogen production options with a regenerative fuel cell system. Energy. 2015;88:801-820. [Link] [DOI:10.1016/j.energy.2015.06.009]
Pham AT, Baba T, Shudo T. Efficient hydrogen production from aqueous methanol in a PEM electrolyzer with porous metal flow field: Influence of change in grain diameter and material of porous metal flow field. International Journal of Hydrogen Energy. 2013;38(24):9945-9953. [Link] [DOI:10.1016/j.ijhydene.2013.05.171]
Garcia-Valverde R, Espinosa N, Urbina A. Simple PEM water electrolyser model and experimental validation. International Journal of Hydrogen Energy. 2012;37(2):1927-1938. [Link] [DOI:10.1016/j.ijhydene.2011.09.027]
Ni M, Leung MKH, Leung DYC. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant. Energy Conversion and Management. 2008;49(10):2748-2756. [Link] [DOI:10.1016/j.enconman.2008.03.018]
Ahmadi P, Dincer I, Rosen MA. Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis. International Journal of Hydrogen Energy. 2013;38(4):1795-1805. [Link] [DOI:10.1016/j.ijhydene.2012.11.025]
Ahmadi P, Dincer I, Rosen MA. Multi-objective optimization of a novel solar-based multigeneration energy system. Solar Energy. 2014;108:576-591. [Link] [DOI:10.1016/j.solener.2014.07.022]
Ranjbar SF, Nami H, Khorshid A, Mohammadpour H. Hydrogen production using waste heat recovery of MATIANT non-emission system via PEM electrolysis. Modares Mechanical Engineering. 2016;16(10):42-50. [Persian] [Link]
Yilmaz C, Kanoglu M, Bolatturk A, Gadalla M. Economics of hydrogen production and liquefaction by geothermal energy. International Journal of Hydrogen Energy. 2012;37(2):2058-2069. [Link] [DOI:10.1016/j.ijhydene.2011.06.037]
Ghaebi H, Farhang B. Using various organic Rankine cycles for production of power and hydrogen by incorporating geothermal energy and proton exchange membrane (A comparative study). Modares Mechanical Engineering. 2016;16(6):138-148. [Persian] [Link]
Ratlamwala TAH, Dincer I. Comparative efficiency assessment of novel multi-flash integrated geothermal systems for power and hydrogen production. Applied Thermal Engineering. 2012;48:359-366. [Link] [DOI:10.1016/j.applthermaleng.2012.04.039]
Ghaebi H, Farhang B, Parikhani T, Rostamzadeh H. Energy, exergy and exergoeconomic analysis of a cogeneration system for power and hydrogen production purpose based on TRR method and using low grade geothermal source. Geothermics. 2018;71:132-145. [Link] [DOI:10.1016/j.geothermics.2017.08.011]
Cengel YA, Boles MA. Thermodynamics: An engineering approach. 7th Edition. New York: McGraw- Hill; 2011. [Link]
Yari M, Mehr AS, Zare V, Mahmoudi SMS, Rosen MA. Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source. Energy. 2015;83:712-722 [Link] [DOI:10.1016/j.energy.2015.02.080]
Ahrendts J. Reference states. Energy. 1980;5(8-9):666-677. [Link] [DOI:10.1016/0360-5442(80)90087-0]
Bejan A, Tsatsaronis G, Moran M. Thermal design and optimization. Hoboken: John Wiley & Sons; 1996. [Link]
Shokati N, Ranjbar F, Yari M. Comparative and parametric study of double flash and single flash/ORC combined cycles based on exergoeconomic criteria. Applied Thermal Engineering. 2015;91:479-495. [Link] [DOI:10.1016/j.applthermaleng.2015.08.031]
Elsayed A, Embaye M, AL-Dadah R, Mahmoud S, Rezk A. Thermodynamic performance of Kalina Cycle System 11 (KCS11): feasibility of using alternative zeotropic mixtures. International Journal of Low-Carbon Technologies. 2013;8(S1):69-78. [Link] [DOI:10.1093/ijlct/ctt020]