مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه تجربی و شبیه‌سازی عددی اثر بافل روی تلاطم سطحی آب کم‌عمق در یک مخزن متحرک با استفاده از نرم‌افزار متن‌باز OpenFOAM

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشکده مهندسی مکانیک، دانشگاه صنعتی سیرجان، سیرجان، ایران
2 دانشکده مهندسی شیمی، دانشگاه صنعتی سیرجان، سیرجان، ایران
چکیده
بر اثر ایجاد جابه‌جایی سازه یک مخزن مایع و انتقال این حرکت به مایع، حرکت سطح آزاد مایع داخل آن با به وجود آوردن موج (پدیده اسلاشینگ) باعث وارد شدن ضربات فشاری بر دیوارهای کناری و جانبی مخزن می‌شود. این پدیده با به وجود آوردن موج‌های پر انرژی و مخرب و همچنین ایجاد نیروهای هیدرودینامیکی با دامنه نوسانات بالا باعث اعمال نیروی نوسانی و گاهاً غیرقابل کنترل بر دیوارهای جانبی و موجب اختلال در حرکت عادی وسیله نقلیه حمل‌کننده مایع می‌شود که اهمیت بررسی و ارایه راهکارهای پیشگیری این پدیده را نشان می‌دهد. وسعت مواجهه با این پدیده در صنایعی دیگر همچون صنایع موشکی با سوخت مایع، کشتی‌های نفت‌کش یا حامل سوخت‌ها و مواد مایع، تانکرهای ماشین‌های سوخت‌رسان (مایع) یا مخازن آب، ایجاب می‌کند با پیش‌بینی رفتار آن اقدامات لازم برای کنترل پدیده اسلاشینگ صورت بگیرد. یکی از راه‌های کنترلی استفاده از بافل یا صفحاتی در راستای عرضی مخزن است. در این مقاله معادلات حاکم بر این پدیده در نرم‌افزار متن‌باز OpenFOAM حل‌شده است. این نرم‌افزار معادلات دیفرانسیل با مشتقات جزیی را با استفاده از روش حجم محدود حل می‌کند که به صورت پیش‌فرض هندسه را سه‌بُعدی در نظر می‌گیرد. برای حل جریان دو فاز از مدل اصلاح‌شده حجم‌های مایع (VOF) استفاده شده و از مدل مش متحرک هم برای حرکت بدنه مخزن استفاده شده است. در روش VOF، مقدار فازها به صورت کسری از یک (کسر حجمی) بیان می‌شود که برای تعیین آن براساس معادله پیوستگی، یک معادله دیفرانسیل تنظیم و حل می‌شود. برای مدل جریان مغشوش از مدل اصلاح شده k-e با درنظرگرفتن اثرات جریان‌های سطح آزاد استفاده شده است. همچنین مدلی تجربی از یک مخزن واقعی برای تایید پیشگویی‌های شبیه‌سازی ارایه شده است. بررسی‌ها، نشان از انطباق قابل قبول نتایج تجربی و عددی دارند. علاوه بر این نتایج نشان می‌دهد که با استفاده از بافل‌های عمودی تا ۵۰% می‌توان نوسانات ناشی از این پدیده را کاهش داد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental and Numerical Investigating the Effect of Baffle on the Shallow Water Sloshing in a Moving Tank using OpenFOAM Software

نویسندگان English

M.K. Tahmasebi 1
R. Shamsoddini 1
B. Abolpour 2
1 Mechanical Engineering Faculty, Sirjan University of Technology, Sirjan, Iran
2 Chemical Engineering Faculty, Sirjan University of Technology, Sirjan, Iran
چکیده English

The motion of the liquid free surface in a container (sloshing phenomenon) inserts a momentum on the container walls. This makes a great disorder in the movement of the carrier vehicle or inserts a large force and momentum on the container walls. The reason for this phenomenon is the establishment of destructive waves and hydrodynamic forces. The side effects of this phenomenon in various industries, such as ship industries carrying liquid fuels, liquid fuel rocket industries, fuel tanks or water tanks, increase the importance of predictions of the behaviors of this phenomenon. One way of controlling is to use baffles or plates in the transverse direction of the tank. In this study, the governing equations on this phenomenon have been solved using the OpenFOAM software. This software solves partial differential equations using the finite volume method, which by default considers geometry to be three dimensional. In order to solve the two-phase flow, a modified volume of the fluid model (VOF) is applied and the moving mesh model is used for the movement of the container body. In the VOF method, the phases are expressed as a fraction of one (volume fraction). To determine this parameter, based on the continuity equation, a differential equation is regulated and solved. For the turbulent flow model, a modified k-e model is used by considering the effects of free-surface flows. Also, an experimental model of a real moving liquid container has been used for validation of the predictions of the presented simulation. The results show that the experimental and numerical results are in good accordance. In addition, the results show that using vertical baffles up to 50% can reduce the fluctuations caused by this phenomenon.

کلیدواژه‌ها English

sloshing
Turbulent flow
baffle
OpenFoam
Faltinsen OM. A numerical nonlinear method of sloshing in tanks with twodimensional flow. Journal of Ship Research. 1978;22(3):193-202. [Link]
Nakayama T, Washizu K. The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems. International Journal for Numerical Methods in Engineering. 1981;17(11):1631-1646. [Link] [DOI:10.1002/nme.1620171105]
Nakayama T, Washizu K. Nonlinear analysis of liquid motion in a container subjected to forced pitching oscillation. International Journal for Numerical Methods in Engineering. 1980;15(8):1207-1220. [Link] [DOI:10.1002/nme.1620150808]
Cho JR, Lee HW. Non-linear finite element analysis of large amplitute sloshing flow in two-dimensional tank. International Journal for Numerical Methods in Engineering. 2004;61(4):514-531. [Link] [DOI:10.1002/nme.1078]
Wang CZ, Khoo BC. Finite element analysis of two-dimensional nonlinear sloshing problems in random excitations. Ocean Engineering. 2005;32(2):107-133. [Link] [DOI:10.1016/j.oceaneng.2004.08.001]
Wu GX, Ma QW, Taylor RE. Numerical simulation of sloshing waves in a 3D tank based on a finite element method. Applied Ocean Research. 1998;20(6):337-355. [Link] [DOI:10.1016/S0141-1187(98)00030-3]
Kim Y, Shin YS, Lee KH. Numerical study on slosh-induced impact pressures on three-dimensional prismatic tanks. Applied Ocean Research. 2004;26(5):213-226. [Link] [DOI:10.1016/j.apor.2005.03.004]
Ming PJ, Duan WY. Numerical simulation of sloshing in rectangular tank with VOF based on unstructured grids. Journal of Hydrodynamics, Ser. B. 2010;22(6):856-864. [Link] [DOI:10.1016/S1001-6058(09)60126-8]
Wu L, Gong M, Wanga J. Development of a DEM-VOF model for the turbulent free-surface flows with particles and its application to stirred mixing system. Industrial & Engineering Chemistry Research. 2018;57(5):1714-1725. [Link] [DOI:10.1021/acs.iecr.7b04833]
Brar GS, Singh S. An experimental and CFD analysis of sloshing in a tanker. Procedia Technology. 2014;14:490-496. [Link] [DOI:10.1016/j.protcy.2014.08.062]
Jung JH, Yoon HS, Lee CY. Effect of natural frequency modes on sloshing phenomenon in a rectangular tank. International Journal of Naval Architecture and Ocean Engineering. 2015;7(3):580-594. [Link] [DOI:10.1515/ijnaoe-2015-0041]
Shamsoddini R, Abolpour B. Investigation of the effects of baffles on the shallow water sloshing in a rectangular tank using a 2D turbulent ISPH method. China Ocean Engineering. 2019;33(1):94-102. [Link] [DOI:10.1007/s13344-019-0010-z]
Salem MI, Mucino VH, Saunders E, Gautam M, Lozano-Guzman A. Lateral sloshing in partially filled elliptical tanker trucks using a trammel pendulum. International Journal of Heavy Vehicle Systems. 2009;16(1-2):207-224. [Link] [DOI:10.1504/IJHVS.2009.023861]
Celebi MS, Akyildiz H. Nonlinear modeling of liquid sloshing in a moving rectangular tank. Ocean Engineering. 2002;29(12):1527-1553. [Link] [DOI:10.1016/S0029-8018(01)00085-3]
Frandsen BJ. Sloshing motions in excited tanks. Journal of Computational Physics. 2004;196(1):53-87. [Link] [DOI:10.1016/j.jcp.2003.10.031]
Kyoung JH, Hong SY, Kim JW, Bai KJ. Finite-element computation of wave impact load due to a violent sloshing. Ocean Engineering. 2005;32(17-18):2020-2039. [Link] [DOI:10.1016/j.oceaneng.2005.04.003]
Saripilli JR, Sen D. Numerical studies on effects of slosh coupling on ship motions and derived slosh loads. Applied Ocean Research. 2018;76:71-87. [Link] [DOI:10.1016/j.apor.2018.04.009]
Liu D, Lin P. Three-dimensional liquid sloshing in a tank with baffles. Ocean Engineering. 2009;36(2):202-212. [Link] [DOI:10.1016/j.oceaneng.2008.10.004]
Xue MA, Lin P. Numerical study of ring baffle effects on reducing violent liquid sloshing. Computers & Fluids. 2011;52:116-129. [Link] [DOI:10.1016/j.compfluid.2011.09.006]
Eswaran M, Saha UK, Maity D. Effect of baffles on a partially filled cubic tank: Numerical simulation and experimental validation. Computers and Structures. 2008;87(3-4):198-205. [Link] [DOI:10.1016/j.compstruc.2008.10.008]
Cho IH, Kim MH. Effect of dual vertical porous baffles on sloshing reduction in a swaying rectangular tank. Ocean Engineering. 2016;126:364-373. [Link] [DOI:10.1016/j.oceaneng.2016.09.004]
Sanapala VS, Rajkumar M, Velusamy K, Patnaik BSV. Numerical simulation of parametric liquid sloshing in a horizontally baffled rectangular container. Journal of Fluids and Structures. 2018;76:229-250. [Link] [DOI:10.1016/j.jfluidstructs.2017.10.001]
Deshpande SS, Anumolu L, Trujillo MF. Evaluating the performance of the two-phase flow solver InterFoam. Computional Science & Discovery. 2012;5(1). [Link] [DOI:10.1088/1749-4699/5/1/014016]
Hoang DA, van Steijn V, Portela LM, Kreutzer MT, Kleijn CR. Benchmark numerical simulations of segmented two-phase flows in microchannels using the Volume of Fluid method. Computer & Fluids. 2013;86:28-36. [Link] [DOI:10.1016/j.compfluid.2013.06.024]
Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. Journal of Computional Physics. 1992;100(2):335-354. [Link] [DOI:10.1016/0021-9991(92)90240-Y]
Launder BE, Spalding DB. The numerical computation of turbulent lows. Computer Methods in Applied Mechanics and Engineering. 1974;3(2):269-289. [Link] [DOI:10.1016/0045-7825(74)90029-2]
Lafaurie B, Nardone C, Scardovelli R, Zaleski S, Zanetti G. Modelling merging and fragmentation in multiphase flows with SURFER. Journal of Computional Physics. 1994;113(1):134-147. [Link] [DOI:10.1006/jcph.1994.1123]