مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه تجربی خواص مکانیکی روی پنل ساندویچی با رویه الیاف کربن و هسته فوم اکستیک

نوع مقاله : پژوهشی اصیل

نویسنده
گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه ملایر، ملایر، ایران
چکیده
در این تحقیق از روشی کارآمد از نظر هزینه و تجهیزات موجود برای ساخت نمونه‌های پنل ساندویچی با هسته فوم اکستیک و هسته فوم معمولی استفاده ‌شده است. برای ساخت فوم اکستیک از فوم پلی‌اورتان استفاده‌ شده است و همچنین روی نمونه فوم ساخته شده آنالیز حرارتی انجام شد تا محدوده حرارتی مجاز برای ساخت فوم اکستیک مشخص شود. در رویه پنل، چهار لایه الیاف کربن به‌ کار برده شده که پس از ساخت هسته‌ها و رویه‌ها پنل ساندویچی با دو هسته از جنس متفاوت ساخته شد. آزمایش‌های مختلفی از جمله آزمایش خمش سه‌نقطه‌ای، آزمایش فشار لبه‌ای، آزمایش ضربه شارپی، آزمایش فشار مسطح و ضربه افتان روی نمونه‌ها به‌منظور دستیابی به برخی خواص مکانیکی انجام شد و نتایج مورد ارزیابی قرار گرفت. نتایج به دست آمده از آزمایش فشار مسطح نشان داد که مدول فشاری پنل ساندویچی با هسته فوم اکستیک ۸/۴ برابر مدول پنل ساندویچی با هسته فوم معمولی است. همچنین مقاومت فشاری آن به دلیل خاصیت اکستیک بودن هسته، در حدود ۲۰ برابر مقاومت پنل ساندویچی با هسته فوم معمولی برآورد شد. این رفتار به دلیل ضریب پواسون منفی این مواد است که دامنه تغییر آنها را نسبت به مواد دیگر بالا می‌برد. همچنین نتایج حاصل از آزمایش ضربه افتان نشان داد که مقاومت به ضربه در پنل ساندویچی با هسته فوم اکستیک نسبت به پنل ساندویچی با هسته فوم معمولی به میزان ۱۲/۶۲% افزایش پیدا می‌کند که دلیل آن قابلیت جذب انرژی بالای این‌گونه مواد است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental Study of Mechanical Properties on the Sandwich Panel with Auxetic Foam Core and Carbon Fiber

نویسنده English

A. Shahrjerdi
Mechanical Engineering Department, Engineering Faculty, Malayer University, Malayer, Iran
چکیده English

In this research, an efficient method has been used in terms of cost and equipment for the production of sandwich panels with auxetic foam core and ordinary foam. Polyurethane foam has been used for making the auxetic foam. Then, on the foam specimen, a thermal analysis is performed to determine the specified thermal range for making the auxetic foam. Four layers of carbon fiber were used to make the sheet in the panel. After making cores and sheets, the sandwich panel was made up of two different cores. To achieve the mechanical properties of the samples, various experiments were carried out, including a three-point flexural test, edgewise compression test, Charpy impact test, flatwise compression test, and drop-weight impact test. The results obtained from the flatwise compression test showed that the compression modulus of the sandwich panel with auxetic foam core was 8.4 times the conventional sandwich panel modulus with a normal foam core. Its compressive strength was estimated to be about 20 times the sandwich panel strength with the ordinary foam core. The negative Poisson ratio of these materials causes this behavior, which increases their variation range. The results of the drop-weight impact test showed that the impact resistance of the sandwich panel with the auxetic foam core is increased by 12.62% compared to the sandwich panel with the conventional foam core, which is due to the high-energy absorption of these materials.

کلیدواژه‌ها English

Sandwich panel
Auxetic Foam
Carbon Fiber
Three-Point Flexural Test
Charpy Impact Test
Fang H, Shi H, Wang Y, Qi Y, Liu W. Experimental and theoretical study of sandwich panels with steel facesheets and GFRP core. Advances in Materials Science and Engineering. 2016;Article ID 7159205. [Link] [DOI:10.1155/2016/7159205]
Veronda DR, Westmann RA. Mechanical characterization of skin-finite deformations. Journal of Biomechanics. 1970;3(1):111-122. [Link] [DOI:10.1016/0021-9290(70)90055-2]
Masters IG, Evans KE. Models for the elastic deformation of honeycombs. Composite structures. 1996;35(4):403-422. [Link] [DOI:10.1016/S0263-8223(96)00054-2]
Li Y. The anisotropic behavior of Poisson's ratio, Young's modulus, and shear modulus in hexagonal materials. Physica Status Solidi (A). 1976;38(1):171-175. [Link] [DOI:10.1002/pssa.2210380119]
Gibson LJ, Ashby MF, Schajer GS, Robertson CI. The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society A, Mathematical and Physical Sciences. 1982;382(1782):25-42. [Link] [DOI:10.1098/rspa.1982.0087]
Lakes R. Foam structures with a negative Poisson's ratio. Science. 1987;235(4792):1038-1040. [Link] [DOI:10.1126/science.235.4792.1038]
Evans KE. Auxetic polymers: A new range of materials. Endeavour. 1991;15(4):170-174. [Link] [DOI:10.1016/0160-9327(91)90123-S]
Grima JN, Attard D, Gatt R, Cassar RN. A novel process for the manufacture of auxetic foams and for their re-conversion to conventional form. Advanced Engineering Materials. 2009;11(7):533-535. [Link] [DOI:10.1002/adem.200800388]
Hayase M, Ecklund RC, Walkington RJ, Hughes JB, Williams NR, inventors. McDonnell Douglas Corp, assignee. Method of fabricating metallic sandwich structure. United States Patent US 4304821. 1981 Dec 8. [Link]
Zhang XD, Sun CT. Formulation of an adaptive sandwich beam. Smart Materials and Structures. 1996;5:814. [Link] [DOI:10.1088/0964-1726/5/6/012]
Dattoma V, Marcuccio R, Pappalettere C, Smith GM. Thermographic investigation of sandwich structure made of composite material. NDT & E International. 2001;34(8):515-520. [Link] [DOI:10.1016/S0963-8695(00)00082-7]
Ruzzene M, Scarpa F. Control of wave propagation in sandwich beams with auxetic core. Journal of Intelligent Material Systems and Structures. 2003;14(7):443-453. [Link] [DOI:10.1177/1045389X03035515]
Abrate S. Modeling of impacts on composite structures. Composite Structures. 2001;51(2):129-138. [Link] [DOI:10.1016/S0263-8223(00)00138-0]
Chi Y, Langdon GS, Nurick GN. The influence of core height and face plate thickness on the response of honeycomb sandwich panels subjected to blast loading. Materials & Design. 2010;31(4):1887-1899. [Link] [DOI:10.1016/j.matdes.2009.10.058]
Crupi V, Epasto G, Guglielmino E. Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading. International Journal of Impact Engineering. 2012;43:6-15. [Link] [DOI:10.1016/j.ijimpeng.2011.12.002]
Tan CY, Akil HM. Impact response of fiber metal laminate sandwich composite structure with polypropylene honeycomb core. Composites Part B: Engineering. 2012;43(3):1433-1438. [Link] [DOI:10.1016/j.compositesb.2011.08.036]
Uzer G, Ding Y, Chiang F. Auxetic foam as a core material for sandwich pamels. Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2007, Unknown Publisher; 2007. [Link]
Taghipoor H, Damghani Noori M. Experimental investigation of energy absorption in foam filled sandwich beams with expanded metal sheet as core under quasi-static bending. Modares Mechanical Engineering. 2018;18(3):126-134. [Persian] [Link]
Khondabi R, Khodarahmi H, Hosseini R, Zia Shamami M. Experimental and numerical study of core and face-sheet thickness effects in sandwich panels with foam core and aluminum face-sheets subjected to blast loading. Journal of Solid and Fluid Mechanics. 2018;8(3):91-106. [Persian] [Link]
Moharami S. Experimental analysis sandwich panel by auxetic foam core [Dissertation]. Tehran: K. N. Toosi University of Technology; 2014. [Link]
lavanpolymer.ir [Internet]. Tehran: Lavanpolymer; Unknown year [Unknown cited]. Available from: http://www.lavanpolymer.ir. [Persian] [Link]
ASTM International. ASTM C393 / C393M-16, Standard test method for core shear properties of sandwich constructions by beam flexure. Volume 15.03. West Conshohocken: ASTM International; 2016. [Link]
ASTM International. ASTM C364-99, Standard test method for edgewise compressive strength of sandwich constructions. West Conshohocken: ASTM International; 1999. [Link]
ASTM International. ASTM D256-02, Standard test methods for determining the izod pendulum impact resistance of plastics. West Conshohocken: ASTM International; 2002. [Link]
ASTM International. ASTM C365-03, Standard test method for flatwise compressive properties of sandwich cores. West Conshohocken: ASTM International; 2003. [Link]
ASTM International. ASTM D7136 / D7136M-15, Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event. West Conshohocken: ASTM International; 2015. [Link]