مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تجربی و عددی ضربه بالستیک پرتابه‌هایی با دماغه متفاوت در اهداف ترکیبی سرامیک- فلز

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه ایوان‌کی، ایوان‌کی، ایران
2 گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران
چکیده
در مکانیک ضربه، پارامترهای تاثیرگذار بسیاری در برخوردها وجود دارند. در این مقاله به بررسی یکی از این پارامترها یعنی رابطه بین عمق نفوذ در اهداف ترکیبی سرامیک- فلز با شکل دماغه پرتابه، پرداخته شده است. پرتابه‌هایی با شکل دماغه تخت، اجایو و نیم‌کره از جنس فولادی AISI ۴۳۴۰ و اهداف نیمه بی‌نهایت از جنس سرامیک آلومینا ۹۹/۵% و آلومینیوم سری ۷۰۰۰ هستند. در آزمایش تجربی، سرعت برخورد پرتابه در حدود ۴۰۰متر بر ثانیه و ضخامت سرامیک و آلومینیوم به ترتیب ۴ و ۲۰میلی‌متر بوده است. شبیه‌سازی عددی با نرم‌افزار قدرتمند آباکوس انجام شده است. مقدار عمق نفوذ به‌دست‌آمده از شبیه‌سازی عددی با آزمایش‌های تجربی، مطابقت خوبی را نشان می‌دهد. مقدار عمق نفوذ برای پرتابه با دماغه تخت بیشترین و برای پرتابه با دماغه اجایو کمترین بوده است. همچنین مقدار سرعت حد بالستیک برای پرتابه تخت کمترین و برای پرتابه اجایو بیشترین بوده است. ضخامت سرامیک همراه شکل پرتابه روی مقدار سایش پرتابه تاثیرگذار است. مقدار این سایش در پرتابه اجایو بیشترین و در پرتابه تخت کمترین بوده است و با افزایش ضخامت سرامیک این مقادیر افزایش یافته است. تغییرات سرعت حد بالستیک با تغییرات ضخامت پشتیبان و سرامیک نیز تعیین شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental and Numerical Investigation of Ballistic Impact on Ceramic–Metal Combined Targets with Different Nosed Projectiles

نویسندگان English

M. Sayah-Badkhor 1
A. Naddaf-Oskouei 2
D. Kashani 1
M. Agha Mola Tehrani 1
1 Mechanical Engineering Department, Engineering Faculty, Eyvanekey University, Eyvanekey, Iran
2 Mechanical Engineering Department, Engineering Faculty, Imam Hossein Comprehensive University, Tehran, Iran
چکیده English

There are many effective parameters in impact mechanics. In this article, the relation between the depth of penetration and the projectile nose shape has been investigated. Projectiles were made of AISI 4340 material with flat, ogive, and hemispherical nose shapes. Semi-infinite targets made of alumina ceramic 99.5 and aluminum 7000. The projectile impact velocity in this experimental test was about 400m/s and the thickness of ceramic and aluminum were 4 and 20mm, respectively. A numerical simulation has been conducted by Abaqus software. The results of the numerical simulation show a good agreement with the empirical observations. The depth of penetration for the flat projectile and ogive projectile was highest and lowest, respectively. The ballistic limit velocity for the flat projectile and ogive projectile was lowest and highest, respectively. Projectile erosion is affected by the ceramic thickness and the shape of the projectile. The amount of this erosion for the flat projectile and ogive projectile was lowest and highest, respectively. Increasing ceramic thickness leads to more erosion in the projectile. Also, the changes of ballistic limit velocity have been determined with the changes of ceramic and backing metal thickness.

کلیدواژه‌ها English

Projectile Penetration
Combined Targets
Projectile Shape
Numerical simulation
experimental test
Florence AL, Ahrens TJ. Interaction of projectiles and composite armor. Fort Belvoir: Defense Technical Information Center; 1967. [Link] [DOI:10.21236/AD0652726]
Tate A. A theory for the deceleration of long rods after impact. Journal of the Mechanics and Physics of Solids. 1967;15(6):387-399. [Link] [DOI:10.1016/0022-5096(67)90010-5]
Wilkins ML. Mechanics of penetration and perforation. International Journal of Engineering Science. 1978;16(11):793-807. [Link] [DOI:10.1016/0020-7225(78)90066-6]
Backman ME, Goldsmith W. The mechanics of penetration of projectiles into targets. International Journal of Engineering Science. 1978;16(1):1-99. [Link] [DOI:10.1016/0020-7225(78)90002-2]
Rozenberg Z, Yeshurun Y. The relation between ballastic efficiency and compressive strength of ceramic tiles. International Journal of Impact Engineering. 1988;7(3):357-362. [Link] [DOI:10.1016/0734-743X(88)90035-8]
Woodward RL. A simple one-dimensional approach to modelling ceramic composite armour defeat. International Journal of Impact Engineering. 1990;9(4):455-474. [Link] [DOI:10.1016/0734-743X(90)90035-T]
Den Reijer PC. Impact on ceramic faced armour [Dissertation]. Delft: Delft University of Technology; 1991. [Link]
Zaera R, Sanchez-Galvez V. Analytical modelling of normal and oblique ballistic impact on ceramic/metal lightweight armours. International Journal of Impact Engineering. 1998;21(3):133-148. [Link] [DOI:10.1016/S0734-743X(97)00035-3]
Chocron Benloulo IS, Sanchez-Galvez V. A new analytical model to simulate impact onto ceramic/composite armors. International Journal of Impact Engineering. 1998;21(6):461-471. [Link] [DOI:10.1016/S0734-743X(98)00006-2]
Fellows NA, Barton PC. Development of impact model for ceramic-faced semi-infinite armour. International Journal of Impact Engineering. 1999;22(8):793-811. [Link] [DOI:10.1016/S0734-743X(99)00017-2]
Zaera R, Sánchez-Sáez S, Pérez-Castellanos JL, Navarro C. Modelling of the adhesive layer in mixed ceramic/metal armours subjected to impact. Composites Part A: Applied Science and Manufacturing. 2000;31(8):823-833. [Link] [DOI:10.1016/S1359-835X(00)00027-0]
Wen HM. Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes. Composite Structures. 2000;49(3):321-329. [Link] [DOI:10.1016/S0263-8223(00)00064-7]
Shokrieh MM, Javadpour GH. Penetration analysis of a projectile in ceramic composite armor. Composite Structures. 2008;82(2):269-276. [Link] [DOI:10.1016/j.compstruct.2007.01.023]
Arias A, Rodríguez-Martínez JA, Rusinek A. Numerical simulations of impact behaviour of thin steel plates subjected to cylindrical, conical and hemispherical non-deformable projectiles. Engineering Fracture Mechanics. 2008;75(6):1635-1656. [Link] [DOI:10.1016/j.engfracmech.2007.06.005]
Babaei B, Shokrieh MM, Daneshjou K. The ballistic resistance of multi-layered targets impacted by rigid projectiles. Materials Science and Engineering: A. 2011;530:208-217. [Link] [DOI:10.1016/j.msea.2011.09.076]
Rodríguez-Millán M, Vaz-Romero A, Rusinek A, Rodríguez-Martínez JA, Arias A. Experimental study on the perforation process of 5754-H111 and 6082-T6 aluminium plates subjected to normal impact by conical, hemispherical and blunt projectiles. Experimental Mechanics. 2014;54(5):729-742. [Link] [DOI:10.1007/s11340-013-9829-z]
Yunfei D, Wei Z, Yonggang Y, Lizhong Sh, Gang W. Experimental investigation on the ballistic performance of double-layered plates subjected to impact by projectile of high strength. International Journal of Impact Engineering. 2014;70:38-49. [Link] [DOI:10.1016/j.ijimpeng.2014.03.003]
Mehrabani Yeganeh E, Liaghat GH, Pol MH. Experimental investigation of cylindrical projectiles nose shape effects on high velocity perforation of woven polymer composite. Modares Mechanical Engineering. 2015;14(14):309-318. [Persian] [Link]
Venkatesan J, Iqbal MA, Madhu V. Ballistic performance of bilayer alumina/aluminium and silicon carbide/aluminium armours. Procedia Engineering. 2017;173:671-678. [Link] [DOI:10.1016/j.proeng.2016.12.141]
Ekrami M, Ahmadi H, Bayat M, Sabouri H. Experimental study of projectiles with flat, conical and hemispherical nose shapes on low velocity impact on GLARE 3. Modares Mechanical Engineering. 2017;17(7):109-118. [Persian] [Link]
Mirzababaie Mostofi T, Babaei H, Alitavoli M, Hosseinzadeh S. On dimensionless numbers for predicting large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin-Walled Structures. 2017;112:118-124. [Link] [DOI:10.1016/j.tws.2016.12.014]
Babaei H, Mirzababaie Mostofi T, Alitavoli M. Experimental and analytical investigation into large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin-Walled Structures. 2016;107:257-265. [Link] [DOI:10.1016/j.tws.2016.06.013]
Itagaki Y, Tamura H, Watanabe Y, Taniyama K, Takashima A. Effects of head shape of projectiles on hypervelocity impact cratering on aluminum 5052 alloy targets at 7 km/s. International Journal of Impact Engineering. 2019;123:38-47. [Link] [DOI:10.1016/j.ijimpeng.2018.09.017]
Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. 7th International Symposium on Ballistics, 1983 April 19-21, the Hague, the Netherlands. Unknown Publisher; 1983. pp. 541-547. [Link]
Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics. 1985;21(1):31-48. [Link] [DOI:10.1016/0013-7944(85)90052-9]
Alipour R, Najarian F. A FEM study of explosive welding of double layer tubes. International Journal of Mechanical and Mechatronics Engineering. 2011;5(1):183-185. [Link]
Holmquist TJ, Templeton DW, Bishnoi KD. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications. International Journal of Impact Engineering. 2001;25(3):211-231. [Link] [DOI:10.1016/S0734-743X(00)00046-4]
Cronin DS, Bui K, Kaufmann Ch, McIntosh G, Berstad T, Cronin D. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-Dyna. 4th European LS-DYNA Users Conference, 2003 May 22-23, ULM, Germany. Unknown City: European LS-DYNA; 2003. [Link]
Yazdani M, Rashed A. Studying the performance of multi-layered ceramic-epoxy armor under high velocity impact with finite element method. Modares Mechanical Engineering. 2015;15(1):11-20. [Persian] [Link]