مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل ارتعاشاتی تیر یک سرگیردار با لایه پیزوالکتریک تحت نیروهای آیروالاستیک و تحریک پایه جابجایی و دورانی

نوع مقاله : پژوهشی اصیل

نویسنده
گروه مهندسی مکانیک بیوسیستم، واحد بناب، دانشگاه آزاد اسلامی، بناب، ایران
چکیده
نظریه برداشت انرژی مکانیکی- ارتعاشی محیط در دهه اخیر مورد بررسی پژوهشگران قرار گرفته است. در تحقیق حاضر به تحلیل ارتعاشات یک تیر یک‌سر گیردار ویسکوالاستیک با دولایه پیزوالکتریک با اتصال سری و موازی تحت نیروی آیروالاستیک و تحریک پایه به صورت جابجایی و دورانی پرداخته شد. ماده ویسکوالاستیک تیر با استفاده از مدل مکانیکی جامع کلوین- وویت توصیف شد. نیروی آیروالاستیک براساس تئوری پیستون و تحریک پایه به صورت تصادفی و هارمونیک در نظر گرفته شدند. برای استخراج معادله‌های ارتعاشاتی و الکتریکی تیر به‌ترتیب از کوپل بین میدان تنش تیر و پیزوالکتریک و معادلات گاوس استفاده شد. معادله ارتعاشی به روش گالرکین، به صورت گسسته نوشته شد و همراه با معادله الکتریکی به کمک روش عددی رانگ- کوتا حل شدند. سپس با بررسی پاسخ معادلات حاکم به مطالعه تاثیر پارامترهای سیستم بر رفتار ارتعاشی تیر و ولتاژ خروجی پرداخته شد. نتایج نشان داد که نوع اتصال مدار (سری یا موازی) تاثیری بر فرکانس‌های سیستم و پاسخ فرکانسی ندارد. با افزایش سفتی، فرکانس طبیعی ارتعاشی تیر افزایش می‌یابد. میرایی ساختاری بر مقدار ولتاژ خروجی تاثیر بسزایی دارد. همچنین با افزایش فشار در محیط مقدار ولتاژ خروجی کاهش می‌یابد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Vibration Analysis of Cantilever Beam With Piezoelectric Layer under Aero-Elastic Force and Moving and Rotating Base Excitation

نویسنده English

M. Abbasgholipour
Biosystem Mechanical Engineering Department, Bonab Branch, Islamic Azad University, Bonab, Iran
چکیده English

The theory of mechanical-vibration energy harvesting from the environment has been studied by researchers in the recent decade. In the present research, the vibration of the viscoelastic cantilever beam was analyzed with two piezoelectric layers including series and parallel connections. The beam was exposed under moving and rotating base excitation and aero-elastic force. The beam viscoelastic material was described using the generalized Kelvin-Voigt mechanical model. The aero-elastic force based on piston theory is considered while the base excitation is selected harmonic and randomly. The stress field coupling among the beam and piezoelectric as well as Gauss equation were utilized to extract the vibration and electrical equations respectively. The vibratory equation was converted into a set of ordinary differential equations using the Galerkin approach. The obtained equations with electrical equation were solved by the Runge-Kutta method numerically. Then, by studying the response of the governing equations, the effect of system parameters on the vibrational behavior of the beam and the output voltage was investigated. The results showed that the system and response frequencies are not affected via circuit connection types (series or parallel). The natural vibratory frequency is increased with enhancing the beam stiffness. The structural damping has a significant effect on the output voltage value. Also, the output voltage is increased by enhancing the environmental pressure.

کلیدواژه‌ها English

Cantilever beam
Series and Parallel Piezoelectric
Energy harvesting
Aero-Elastic Force
Randomly and Harmonic Base Excitation
Erturk A. Electromechanical modeling of piezoelectric energy harvesters [Dissertation] Blacksburg: Virginia Tech, 2009. [Link]
Sodano HA, Inman DJ, Park G. A review of power harvesting from vibration using piezoelectric materials. Shock and Vibration Digest. 2004;36(3):197-206. [Link] [DOI:10.1177/0583102404043275]
Salmani H, Rahimi GH. Investigation of the exponentially tapering effect on the behavior of piezoelectric energy harvester including geometric, inertial, material and damping nonlinearities. Modares Mechanical Engineering. 2018;18(2):434-442. [Persian] [Link]
Jabbari M. The effect of strain nodes on the energy harvesting of the cantilever piezoelectric beam with the vibration mode excitation. Modares Mechanical Engineering. 2017;17(10):65-72. [Persian] [Link]
Sobhanirad S, Afsharfard A. Experimental study of galloping-based energy harvesting system using piezoelectric materials. Modares Mechanical Engineering. 2017;17(10):233-241. [Persian] [Link]
Karimi M, Tikani R, Ziaei-Rad S. Piezoelectric energy harvesting from bridge vibrations under moving consecutive masses. Modares Mechanical Engineering. 2016;16(6):108-118. [Persian] [Link]
Williams CB, Yates RB. Analysis of a micro-electric generator for microsystems. Sensors and Actuators A: Physical. 1996;52(1-3):8-11. [Link] [DOI:10.1016/0924-4247(96)80118-X]
Goldfarb M, Jones LD. On the efficiency of electric power generation with piezoelectric ceramic. Journal of Dynamic Systems, Measurement, and Control. 1999;121(3):566-571. [Link] [DOI:10.1115/1.2802517]
El-Hami M, Glynne-Jones P, White NM, Hill M, Beeby S, James E, et al. Design and fabrication of a new vibration-based electromechanical power generator. Sensors and Actuators A: Physical. 2001;92(1-3):335-342. [Link] [DOI:10.1016/S0924-4247(01)00569-6]
Kasyap A, Lim JS, Johnson D, Horowitz S, Nishida T, Ngo K, et al. Energy reclamation from a vibrating piezoceramic composite beam. Ninth International Congress on Sound and Vibration, Icsv9, Unknown Date, Orlando, Florida. Florida: University of Florida; Unknown Publish Year. [Link]
Huang C, Lin YY, Tang TA. Study on the tip-deflection of a piezoelectric bimorph cantilever in the static state. Journal of Micromechanics and Microengineering. 2004;14(4):530. [Link] [DOI:10.1088/0960-1317/14/4/013]
Roundy S. On the effectiveness of vibration-based energy harvesting. Journal of Intelligent Material Systems and Structures. 2005;16(10):809-823. [Link] [DOI:10.1177/1045389X05054042]
Roundy S, Leland ES, Baker J, Carleton E, Reilly E, Lai E, et al. Improving power output for vibration-based energy scavengers. IEEE Pervasive Computing. 2005;4(1):28-36. [Link] [DOI:10.1109/MPRV.2005.14]
Roundy S, Wright PK. A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures. 2004;13(5):1131. [Link] [DOI:10.1088/0964-1726/13/5/018]
Stephen NG. On energy harvesting from ambient vibration. Journal of Sound and Vibration. 2006;293(1-2):409-425. [Link] [DOI:10.1016/j.jsv.2005.10.003]
Beeby SP, Tudor MJ, White NM. Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology. 2006;17(12):R175. [Link] [DOI:10.1088/0957-0233/17/12/R01]
Ajitsaria J, Choe SY, Shen D, Kim DJ. Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Materials and Structures. 2007;16(2):447. [Link] [DOI:10.1088/0964-1726/16/2/024]
Erturk A, Inman DJ. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures. 2009;18(2):25009-25018. [Link] [DOI:10.1088/0964-1726/18/2/025009]
Kim SH, AhnJH, Chung HM, Kang HW. Analysis of piezoelectric effects on various loading conditions for energy harvesting in a bridge system. Sensors and Actuators A: Physical. 2011;167(2):468-483. [Link] [DOI:10.1016/j.sna.2011.03.007]
Ali SF, Friswell MI, Adhikari S. Analysis of energy harvesters for highway bridges. Journal of Intelligent Material Systems and Structures. 2011;22(16):1929-1938. [Link] [DOI:10.1177/1045389X11417650]
Lueke J, Rezaei M, Moussa WA. Investigation of folded spring structures for vibration-based piezoelectric energy harvesting. Journal of Micromechanics and Microengineering. 2014;24(12):125011. [Link] [DOI:10.1088/0960-1317/24/12/125011]
Asgharzadeh M, Jahani K, Kianpoor A, Sadeghi MH. Energy Harvesting Investigation from Unimorph Trapezoidal Beam Vibrations using Distributed Parameters Method. Modares Mechanical Engineering. 2015;14(15):96-102. [Link]
Kim M, Dugundji J, Wardle BL. Efficiency of piezoelectric mechanical vibration energy harvesting. Smart Materials and Structures. 2015;24(5):055006. [Link] [DOI:10.1088/0964-1726/24/5/055006]
Erturk A, Inman DJ. Piezoelectric energy harvesting. In: Erturk A, Inman DJ, editors. Piezoelectric Energy Harvesting. Hoboken: Wiley; 2011. pp. 112-221. [Link] [DOI:10.1002/9781119991151]
Davidson J, Mo Ch. Recent advances in energy harvesting technologies for structural health monitoring applications. Smart Materials Research. 2014;2014:410316. [Link] [DOI:10.1155/2014/410316]
T. Martinez, G. Pillonnet, F. Costa. A 15-mV inductor-less start-up converter using a piezoelectric transformer for energy harvesting applications. IEEE Transactions on Power Electronics. 2018;33(3):2241-2253. [Link] [DOI:10.1109/TPEL.2017.2690804]
Jin W, Wang Z, Huang H, Hu X, He Y, Li M. High-performance piezoelectric energy harvesting of vertically aligned Pb(Zr,Ti)O3 nanorod arrays. RSC Advances. 2018;8(14):7422-7427. [Link] [DOI:10.1039/C7RA13506H]
Song HC, Kumar P, Maurya D, Kang MG, Reynolds WT, Jeong DY, et al. Ultra-low resonant piezoelectric MEMS energy harvester with high power density. Journal of Microelectromechanical Systems. 2017;26(6):1226-1234. [Link] [DOI:10.1109/JMEMS.2017.2728821]
Liu L, Pang Y, Yuan W, Zhu Z, Yang Y. A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier. Journal of Semiconductors. 2018;39(4):045002. [Link] [DOI:10.1088/1674-4926/39/4/045002]
Meirovitch L. Analytical methods in vibration. 1st Edition. London: Pearson; 1967. [Link]
Hosseini M, Lotfi Asadi F. Vibration analysis of a cantilever beam with piezoelectric layers under aeroelastic force and base excitation. Modares Mechanical Engineering. 2017;17(1):221-228. [Persian] [Link]
Rao SS. Vibration of continuous systems. 1st Edition. Hoboken: Wiley; 2007. pp. 110-231. [Link]