مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه تجربی و بهینه‌سازی پاسخ دینامیکی ورق‌های فلز- پلیمر تحت بار ضربه‌ای با استفاده از روش سطح پاسخ

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه مهندسی مکانیک، دانشکده مهندسی برق، مکانیک و کامپیوتر، دانشگاه ایوانکی، ایوانکی، ایران
چکیده
یکی از اهداف اصلی مطالعه حاضر بررسی تجربی و بهینه‌سازی رفتار دینامیکی ورق‌های آلومینیومی با روکش پلیمری تحت بار دفعی است. در بخش مطالعه آزمایشگاهی به بررسی پارامترهای مهم بر ‌فرآیند شکل‌دهی آزاد این ساختارها تحت بار انفجار مخلوط گازها شامل اثر ضخامت لایه آلومینیومی و پلیمری و همچنین اثر بار اعمالی بر میزان بیشترین خیز دایمی پرداخته شد. در بخش بهینه‌سازی به منظور بررسی ‌‌تاثیر ‌‌همزمان پارامترهای اشاره‌شده روی تغییر شکل پلاستیک ساختار از نرم‌افزار طراح آزمایش استفاده شده است. در این نرم‌افزار با استفاده از روش سطح پاسخ ‌‌تاثیر پارامترهای مستقل یعنی ضخامت ورق فلزی، ضخامت روکش پلیمری و ایمپالس بارگذاری ناشی از بار انفجار مخلوط گازی روی خروجی یعنی تغییر شکل ساختار دولایه بررسی شده است. در این بررسی به‌منظور معنی‌دار‌بودن مدل سطح اطمینان ۹۵% در نظر گرفته شده است. بر این اساس p-value برای مدل کمتر از ۰/۰۵ به‌دست آمده و این یعنی مدل درنظرگرفته‌شده معنی‌دار است. مقدار نیز برابر ۰/۹۹۸۰ به‌دست آمده است. نتایج به‌دست آمده حاکی از آن است که مدل ارایه شده برای این آزمایش مناسب بوده و مقادیر به‌دست آمده از پیش‌بینی مدل با نتایج تجربی برای خروجی مطابقت دارد. شرایط بهینه برای کمترین تغییر شکل ساختار دولایه نیز تعیین و ‌‌‌‌مورد آزمایش تجربی قرار گرفته است. نتیجه به‌دست آمده حاکی از تطابق خیلی خوب پیش‌بینی مدل رگرسیونی و آزمایش تجربی است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental Study and Optimization of Dynamic Response of Polymer-Coated Metal Plates Subjected to Impact Loading Using Response Surface Methodology

نویسندگان English

T. Mirzababaie Mostofi
M. Sayah Badkhor
Mechanical Engineering Department, Electrical, Mechanics & Computer Engineering Faculty, University of Eyvanekey, Eyvanekey, Iran
چکیده English

One of the main aims of the current study is the experimental investigation and optimization of the dynamic response of polymer-coated aluminum plates under impulsive load. In the experimental study, the effect of several important parameters on the free forming of these structures under gas mixture detonation load, including the effect of aluminum plate thickness and polymeric coating, as well as the effect of applied load on the maximum permanent transverse deflection were investigated. In the optimization section, Design Expert Software was used to investigate the simultaneous effect of the mentioned parameters on the plastic deformation of the structure. In this software, the effect of independent parameters such as metal sheet thickness, polymer-coated thickness and loading impulse on the deflection of the two-layer structure has been investigated using the response surface method. Accordingly, the p-value for the model was less than 0.05, which means that the model is significant. The value of R2 is also equal to 0.9980. The results indicate that the presented model is suitable for these experimental data. The values obtained from the prediction of the model are consistent with the experimental results. Optimal conditions for the minimize deflection of the two-layer structure were also determined and tested experimentally. The result indicates that the prediction of the regression model and experimental data have a good agreement.

کلیدواژه‌ها English

dynamic response
plastic deformation
Metal Plate
Polymeric Coating
Optimization
response surface methodology
Mirzababaie Mostofi, Babaei H, Alitavoli M. Theoretical analysis on the effect of uniform and localized impulsive loading on the dynamic plastic behaviour of fully clamped thin quadrangular plates. Thin-Walled Structures. 2016;109:367-376. [Link] [DOI:10.1016/j.tws.2016.10.009]
Mirzababaie Mostofi, Golbaf A, Mahmoudi A, Alitavoli M, Babaei H. Closed-form analytical analysis on the effect of coupled membrane and bending strains on the dynamic plastic behaviour of fully clamped thin quadrangular plates due to uniform and localized impulsive loading. Thin-Walled Structures. 2018;123:48-56. [Link] [DOI:10.1016/j.tws.2017.11.010]
Yasar M. Gas detonation forming process and modeling for efficient spring-back prediction. Journal of Materials Processing Technology. 2004;150(3):270-279. [Link] [DOI:10.1016/j.jmatprotec.2004.02.060]
Yaşar M, Demirci HI, Kadi I. Detonation forming of aluminium cylindrical cups experimental and theoretical modelling. Materials & Design. 2006;27(5):397-404. [Link] [DOI:10.1016/j.matdes.2004.11.005]
Kleiner M, Hermes M, Weber M, Olivier H, Gershteyn G, Bach FW, et al. Tube expansion by gas detonation. Production Engineering. 2007;1:9-17. [Link] [DOI:10.1007/s11740-007-0007-y]
Meybodi MK, Bisadi H. Gas Detonation Forming by a mixture of H2 + O2 Detonation. International Journal of Mechanical and Mechatronics Engineering. 2009;3:1037-1040. [Link]
Khaleghi M, Aghazadeh BS, Bisadi H. Efficient oxyhydrogen mixture determination in gas detonation forming. International Journal Mechanics Mechatron Engineering. 2013;7:1748-1754. [Link]
Babaei H, Mirzababaie Mostofi, Sadraei SH. Effect of gas detonation on response of circular plate-experimental and theoretical. Structural Engineering and Mechanics. 2015;56(4):535-548. [Link] [DOI:10.12989/sem.2015.56.4.535]
Babaei H, Mirzababaie Mostofi T, Alitavoli M. Experimental investigation and analytical modelling for forming of circular-clamped plates by using gases mixture detonation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2015 October. [Link] [DOI:10.1177/0954406215614336]
Babaei H, Mirzababaie Mostofi, Alitavoli M, Darvizeh A. Empirical modelling for prediction of large deformation of clamped circular plates in gas detonation forming process. Experimental Techniques. 2016;40:1485-1494. [Link] [DOI:10.1007/s40799-016-0063-3]
Babaei H, Mirzababaie Mostofi, Namdari-Khalilabad M, Alitavoli M, Mohammadi K. Gas mixture detonation method, a novel processing technique for metal powder compaction: Experimental investigation and empirical modeling. Powder Technology. 2017;315:171-181. [Link] [DOI:10.1016/j.powtec.2017.04.006]
Patil SP, Popli M, Jenkouk V, Markert B. Numerical modelling of the gas detonation process of sheet metal forming. Journal of Physics: Conference Series. 2016;734:032099. [Link] [DOI:10.1088/1742-6596/734/3/032099]
Jenkouk V, Patil S, Markert B. Joining of tubes by gas detonation forming. Journal of Physics: Conference Series. 2016;734:032101. [Link] [DOI:10.1088/1742-6596/734/3/032101]
Patil SP, Prajapati KG, Jenkouk V, Olivier H, Markert B. Experimental and numerical studies of sheet metal forming with damage using gas detonation process. Metals. 2017;7(12):556. [Link] [DOI:10.3390/met7120556]
Mirzababaie Mostofi, Babaei H, Alitavoli M. The influence of gas mixture detonation loads on large plastic deformation of thin quadrangular plates: Experimental investigation and empirical modelling. Thin-Walled Structures. 2017;118:1-11. [Link] [DOI:10.1016/j.tws.2017.04.031]
Mirzababaie Mostofi T, Babaei H, Alitavoli M. Experimental and theoretical study on large ductile transverse deformations of rectangular plates subjected to shock load due to gas mixture detonation. Strain. 2017;53(4):e12235. [Link] [DOI:10.1111/str.12235]
Mirzababaie Mostofi, Babaei H, Alitavoli M, Lu G, Ruan D. Large transverse deformation of double-layered rectangular plates subjected to gas mixture detonation load. International Journal of Impact Engineering. 2019;125:93-106. [Link] [DOI:10.1016/j.ijimpeng.2018.11.005]
Amini MR, Isaacs JB, Nemat-Nasser S. Experimental investigation of response of monolithic and bilayer plates to impulsive loads. International Journal of Impact Engineering. 2010;37(1):82-89. [Link] [DOI:10.1016/j.ijimpeng.2009.04.002]
Amini M, Amirkhizi A, Nemat-Nasser S. Numerical modeling of response of monolithic and bilayer plates to impulsive loads. International Journal of Impact Engineering. 2010;37(1):90-102. [Link] [DOI:10.1016/j.ijimpeng.2009.04.005]
Amini MR, Isaacs J, Nemat-Nasser S. Investigation of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments. Mechanics of Materials. 2010;42(6):628-639. [Link] [DOI:10.1016/j.mechmat.2009.09.008]
Amini MR, Simon J, Nemat-Nasser S. Numerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments. Mechanics of Materials. 2010;42(6):615-627. [Link] [DOI:10.1016/j.mechmat.2009.09.009]
Ackland K, Anderson C, Ngo TD. Deformation of polyurea-coated steel plates under localised blast loading. International Journal of Impact Engineering. 2013;51:13-22. [Link] [DOI:10.1016/j.ijimpeng.2012.08.005]
Tran P, Ngo TD, Ghazlan A. Numerical modelling of hybrid elastomeric composite panels subjected to blast loadings. Composite Structures. 2016;153:108-122. [Link] [DOI:10.1016/j.compstruct.2016.05.103]
Remennikov A, Ngo T, Mohotti D, Uy B, Netherton M. Experimental investigation and simplified modeling of response of steel plates subjected to close-in blast loading from spherical liquid explosive charges. International Journal of Impact Engineering. 2017;101:78-89. [Link] [DOI:10.1016/j.ijimpeng.2016.11.013]
Sanchez E, Shibata T, Zadeh LA. Genetic algorithms and fuzzy logic systems: Soft computing perspectives. Singapore: World Scientific; 1997. [Link] [DOI:10.1142/2896]
Zamani J, Goudarzi M. Experimental and numerical investigation of the maximum deflection of circular aluminum plate subjected to free air explosion. Modares Mechanical Engineering. 2015;15(1):219-226. [Persian] [Link]
Hadianfard MA, Nemati A, Johari A. Investigation of steel column behavior with different cross section under blast loading. Modares Civil Engineering Journal. 2016;16(4):265-278. [Persian] [Link]
Golmakani H, Moradi Besheli S, Mazdak S, Sharifi E. Experimental and numerical investigation important parameters in deep drawing square sections two layers sheet with rubber matrix. Modares Mechanical Engineering. 2016;16(2):79-87. [Persian] [Link]
Bigdeli A, Damghani Nouri M. Experimental and numerical analysis and multi-objective optimization of quasi-static compressive test on thin-walled cylindrical with internal networking. Mechanics of Advanced Materials and Structures. 2019;2(19):1644-1660. [Link] [DOI:10.1080/15376494.2018.1444231]
Xue Z, Hutchinson JW. Neck retardation and enhanced energy absorption in metal-elastomer bilayers. Mechanics of Materials. 2007;39(5):473-487. [Link] [DOI:10.1016/j.mechmat.2006.08.002]
Myers RH, Montgomery DC, Anderson-Cook CM. Response surface methodology: Process and product optimization using designed experiments. 4th Edition. Hoboken: John Wiley & Sons; 2016. [Link]