مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ارایه مدل آیرودینامیکی غیرخطی DMST به‌منظور بررسی رفتار آیروالاستیک مقطع پره انعطاف‌پذیر توربین باد اچ شکل

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه مهندسی هوافضا، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران
چکیده
تحلیل آیرودینامیک توربین بادی محور عمودی از پیچیدگی بیشتری نسبت به توربین‌های محور افقی برخوردار است. در این پژوهش به منظور بررسی رفتار آیروالاستیک مقطع پره توربین باد محور عمودی اچ شکل از ترکیب مدل آیرودینامیک DMST که مربوط به توربین‌های محور عمودی است و مدل آیرودینامیک ناپایا وگنر و همچنین مدل واماندگی استاتیکی استفاده شده است. بر این اساس از مدل آیرودینامیکی DMST که مربوط به توربین بادی محور عمودی است، برای به دست‌آوردن دو پارامتر زاویه حمله و سرعت نسبی محلی استفاده شده‌است. از این دو پارامتر در ترکیب دو مدل آیرودینامیک وگنر و واماندگی استاتیکی که غیرخطی آیرودینامیکی را لحاظ می‌کنند، استفاده شده است و مدل جدید آیرودینامیک غیرخطی NFDMST ارایه شده است. مقطع پره به صورت یک و دو درجه آزادی به منظور تحلیل آیروالاستیسیته استاتیکی و دینامیکی مدل شده است. پره توربین باد محور عمودی در یک چرخش سرعت و زاویه حمله‌های متفاوتی را تجربه می‌کند و هدف از بررسی شناخت رفتار مقطع پره انعطاف‌پذیر، به دست آوردن سرعت ناپایداری در موقعیت‌های مختلف پره و مشاهده اثر غیرخطی‌های آیرودینامیک و سازه است. نتایج بررسی‌ها نشان می‌دهد که با لحاظ‌کردن آیرودینامیک غیرخطی نتایج از دقت مناسب‌تری برخوردار است. همچنین با توجه به بررسی مدل یک و دو درجه آزادی نقطه طراحی به لحاظ آیروالاستیک در آزیموس ۹۰- درجه است که کمترین سرعت ناپایداری دینامیکی m/s۲/۴۵ است و تغییرات سرعت ناپایداری بالواره چرخان در یک دور چرخش حدود ۶% است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of Aeroelastic Behavior of Straight Bladed Vertical Axis Wind Turbine Using by Nonlinear Flexible DMST (NFDMST) Aerodynamic Model

نویسندگان English

Sh. Shams
M. Ramezani
A. Molaei
Aerospace Engineering Department, New Sciences & Technologies Faculty, University of Tehran, Tehran, Iran
چکیده English

The aerodynamic of Vertical Axis Wind Turbine (VAWT) is more complex than a horizontal axis wind turbine. In the present research, the combination of the Wagner unsteady aerodynamic model, static stall and Double Multiple Stream Tube (DMST) aerodynamic model have been used to investigate the aeroelastic behavior of VAWT. For this purpose, the DMST aerodynamic model, which is related to the vertical axis wind turbine aerodynamics model, has been used to obtain two parameters of the angle of attack and relative velocity. Then these two parameters have been applied to the Wagner nonlinear aerodynamics, which considers the effect of the static stall. This flexible nonlinear presented model based on DMST is called NFDMST aerodynamic model. One-degree of freedom of typical section and two-degree of freedom model have been investigated for static aeroelasticity and dynamic aeroelastic behavior, respectively. The VAWT blade experiences a variety of attack angles and relative velocity in a spin, so the goal is to obtain the instability velocity in a different position and consider the effect of aerodynamic and structure nonlinearity. The results show that the nonlinear aerodynamic model has accurate results and the aeroelastic design condition associated with -90degree azimuth angle, in which the minimum instability velocity is 45.2m/s. In addition, the change of instability speed of rotating airfoil in a spin is about 6%.

کلیدواژه‌ها English

Aeroelasticity
Wagner
NFDMST
Wind turbine
Straight Bladed
Ashwill TD, Sutherland HJ, Berg DE. A retrospective of VAWT technology. California: Sandia National Laboratories; 2012. [Link] [DOI:10.2172/1035336]
Islam M, Ting DSK, Fartaj A. Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renewable and Sustainable Energy Reviews. 2008;12(4):1087-1109. [Link] [DOI:10.1016/j.rser.2006.10.023]
Pope K, Naterer GF, Dincer I, Tsang E. Power correlation for vertical axis wind turbines with varying geometries. International Journal of Energy Research. 2011;35(5):423-435. [Link] [DOI:10.1002/er.1703]
Templin RJ. Aerodynamic performance theory for the NRC vertical-axis wind turbine [Laboratory technical report]. Ottawa: National Research Council of Canada; 1974. [Link]
Wilson RE, Walker SN, Lissaman PBS. Aerodynamics of the Darrieus rotor. Journal of Aircraft. 1976;13(12):1023-1024. [Link] [DOI:10.2514/3.44569]
Paraschivoiu I. Double-multiple streamtube model for Darrieus in turbines. Conference Paper: NASA. Lewis Research Center Wind Turbine Dyn. United States: NASA; 1981. pp. 19-25. [Link]
Theodorsen T. General theory of aerodynamic instability and the mechanism of flutter [Technical Report]. NASA Ames Research Center Classical Aerodynamics Theory. Washington, DC: National Advisory Committee for Aeronautics; 1979. pp. 291-311. [Link]
Bisplinghoff RL, Ashley H, Halfman RL. Aeroelasticity. Boston: Addison-Wesley Publishing Company; 1955. [Link]
Liu L, Wong YS, Lee BHK. Application of the Centre manifold theory in non-linear aeroelasticity. Journal of Sound and Vibration. 2000;234(4):641-659. [Link] [DOI:10.1006/jsvi.1999.2895]
Haddadpour H, Shams S, Kheiri M. Sharp Edge Gust Effects on Aeroelastic Behavior of a Flexible Wing with High Aspect Ratio. 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics (AIAAA); 2005. [Link] [DOI:10.2514/6.2005-838]
Yi L, Zhichun Y. Uncertainty quantification in flutter analysis for an airfoil with preloaded freeplay. Journal of Aircraft. 2010;47(4):1454-147. [Link] [DOI:10.2514/1.C031011]
Badiei D, Sadr MH, Shams S. Nonlinear aeroelastic behavior of slender wings considering a static stall model based on Wagner function. Applied Mechanics Materials. 2013;325-326:172-179. [Link] [DOI:10.4028/www.scientific.net/AMM.325-326.172]
Shams S, Kazemi M, Mirzavand Brojeni B, Khojasteh_Bakhteh Koupaei Z. Investigation of nonlinear aeroelastic behavior of airfoils with flow separation based on cubic static stall modeling. Modares Mechanical Engineering. 2016;16(12):311-322. [Persian] [Link]
Shams S, Esbati Lavasani R. Derivation and Aeroelastic Analysis of a Rotating Airfoil Using Unsteady Loewy Aerodynamic and Flutter Suppression by PID Controller. Modares Mechanical Engineering. 2019;19(6):1347-1354. [Persian] [Link]
Popelka D. Aeroelastic stability analysis of a Darrieus wind turbine [Internet]. Texas: University of Texas; 1982 [cited 2019 Feb 2]. Available from: https://digital.library.unt.edu/ark:/67531/metadc1054067/ [Link] [DOI:10.2172/5086327]
Johnston SF. Distribution category UC-60 proceedings of the vertical axis wind turbine (VAWT) design technology seminar for industry [Internet]. Texas: University of Texas; 1982 [cited 2019 Jun 1]. Available from: https://energy.sandia.gov/wp-content//gallery/uploads/Sand80-0984.pdf [Link]
Nitzsche F. Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity. Journal of Propulsion and Power. 1994;10(3):348-355. [Link] [DOI:10.2514/3.23763]
Abdel Azim El-Sayed AF, Hirsch C, Derdelinckx R. Dynamics of vertical axis wind turbines (Darrieus type). International Journal of Rotating Machinery. 1995;2(1):33-41. [Link] [DOI:10.1155/S1023621X95000182]
Fereidooni A. Numerical study of aeroelastic behaviour of a troposkien shape vertical axis wind turbine [Dissertation]. Carleton: Carleton University; 2013. [Link]
Hameed MS, Afaq SK. Design and analysis of a straight bladed vertical axis wind turbine blade using analytical and numerical techniques. Ocean Engineering. 2013;57:248-55. [Link] [DOI:10.1016/j.oceaneng.2012.09.007]
Liu W, Xiao Q. Investigation on Darrieus type straight blade vertical axis wind turbine with flexible blade. Ocean Engineering. 2015;110 Part A:339-356. [Link] [DOI:10.1016/j.oceaneng.2015.10.027]
Marten D, Pechlivanoglou G, Navid Nayeri C, Oliver Paschereit C. Nonlinear lifting line theory applied to vertical axis wind turbines: Development of a practical design tool. Journal of Fluids Engineering. 2017;140(2):021107. [Link] [DOI:10.1115/1.4037978]
Xu YL, Peng YX, Zhan S. Variable pitch to high-solidity straight-bladed VAWTs for power enhancement. Energy Procedia. 2019;158:382-387. [Link] [DOI:10.1016/j.egypro.2019.01.119]
Paraschivoiu I, Shams S, Dy NV. Performance assessment of Darrieus wind turbines with symmetric and cambered airfoils. Transactions of the Canadian Society for Mechanical Engineering. 2018;42(4):382-392. [Link] [DOI:10.1139/tcsme-2017-0105]
Paraschivoiu I, Trifu O, Saeed F. H-Darrieus wind turbine with blade pitch control. International Journal of Rotating Machinery. 2009;2009:Article ID 505343. [Link] [DOI:10.1155/2009/505343]
Hodges D, Pierce G, Cutchins M. Introduction to structural dynamics and aeroelasticity. Applied Mechanics Reviews. 2003;56(3):B35. [Link] [DOI:10.1115/1.1566393]
Dowell EH. A modern course in aeroelasticity. 5th edition. Nature Switzerland: Springer; 2019. [Link]
Bichiou Y, Nuhait AO, Abdelkefi A, Hajj MR. Unsteady aeroelastic response of rigid airfoils with nonzero angles of attack. 54th AIAA/ASME/ASCE/AHS/ASC Structural Dynamics, and Materials Conference. Boston: American Institute of Aeronautics and Astronautics; 2013. [Link] [DOI:10.2514/6.2013-1562]
Paraschivoiu I, Delclaux F. Double multiple streamtube model with recent improvements. Journal of Energy. 1983;7(3):250-255. [Link] [DOI:10.2514/3.48077]