مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه اثر هندسه ابزار بر استحکام کششی اتصال سرد و بهینه‌سازی ابزار به روش طراحی آزمایش متعامد

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشکده مهندسی مکانیک و مکاترونیک، دانشگاه صنعتی شاهرود، شاهرود، ایران
چکیده
اتصال سرد ورق فلزی، روشی مبتنی بر شکل‌دهی برای همبندی قطعات ورقی است. برای اطمینان از یک اتصال با استحکام کافی لازم است ابزار شکل‌دهی به صورت بهینه طراحی شود. این مقاله به مطالعه عددی و تجربی فرآیند اتصال سرد ورق‌های فولادی با ضخامت ناهمسان با قالب ثابت به منظور بهینه‌سازی پارامترهای هندسی ابزار اتصال سرد می‌پردازد. در این مطالعه با استفاده از روش طراحی آزمایش متعامد (OED) و تحلیل المان محدود در نرم‌افزار آباکوس، شعاع سنبه RP، عمق حفره قالب Pm، عرض شیار کف قالب Lm و زاویه کف سنبه PBA، به عنوان پارامترهای ورودی مهم طراحی ابزار برای رسیدن به بیشترین استحکام کششی F اتصال سرد، به عنوان متغیر هدف، بهینه‌سازی شد. ورق‌های بالایی و پایینی به کار رفته در این تحقیق به ترتیب، به ضخامت ۱/۵ و mm۲ از جنس فولاد گالوانیزه DX۵۱D است که براساس استاندارد EN۱۰۳۴۶/۰۰ توسط شرکت فولاد مبارکه تولید می‌شود. پس از اجرای رایانه‌ای آزمایش‌های طراحی شده با OED، مقادیر mm۲/۶=RP، mm۱/۴=Pm، mm۱/۲=Lm، °۱=PBA و N۲۳۱۹=F به عنوان مقادیر بهینه به دست آمد. پس از بهینه‌سازی هندسهٔ ابزار براساس نتایج آزمایش‌های المان‌محدود، طراحی و ساخت ابزار اتصال سرد انجام گرفت. ارزیابی و مقایسه نتایج شبیه‌سازی اتصال سرد برای طراحی ابزار بهینه، با نتایج تجربی به دست آمده برای هندسه اتصال و استحکام کششی آن انطباق بسیار نزدیکی را نشان داد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of Tool Geometry on the Tensile Strength of Clinched Joint and Tool Optimization Using Orthogonal Experimental Design Method

نویسندگان English

S.A. Alavinejad
S.H. Ghaderi
Mechanical & Mechatronics Engineering Faculty, Shahrood University of Technology, Shahrood, Iran
چکیده English

Sheet metal clinching process is a forming-based method for joining sheet metal parts. To ensure sufficient joint strength, it is necessary to design the forming tool optimally. This paper deals with numerical and experimental study of the clinching process of steel sheets of dissimilar thicknesses using a fixed die in order to optimize the geometric parameters of the clinching tool. In this study, using the orthogonal experimental design (OED) method and finite element analysis in Abaqus software, the important input parameters of tool design including punch radius RP, die cavity depth Pm, die groove width Lm and punch face angle PBA were optimized in order to achieve the highest clinch strength F as the target variable. The upper and lower sheets used in this study are 1.5 and 2 mm in thickness, respectively, and made of DX51D galvanized steel, manufactured according to EN10346/00 by Mobarakeh Steel Company. After running the experiments designed based on the OED in the computer, the optimal values of RP= 2.6mm, Pm= 1.4mm, Lm= 1.2mm and PBA= 1° and F= 2319N were obtained. Next, a clinched joint tool was designed and fabricated based on the optimum geometric parameters. The evaluation and comparison of clinch geometry and tensile strength obtained from optimum design simulation and the experimental counterparts demonstrated very close correlations.

کلیدواژه‌ها English

Sheet Metal Clinching
Orthogonal Experimental Design (OED) Method
Optimization Finite Element Analysis
Joint strength
Abe Y, Kato T, Mori K. Joining of Aluminium alloy and mild steel sheets using mechanical clinching. Materials Science Forum. 2007;561-565:1043-1046. [Link] [DOI:10.4028/www.scientific.net/MSF.561-565.1043]
Abe Y, Kishimoto M, Kato T, Mori K. Joining of hot-dip coated steel sheets by mechanical clinching. International Journal of Material Forming. 2009;2(S1):291-294. [Link] [DOI:10.1007/s12289-009-0446-4]
Varis J. Ensuring the integrity in clinching process. Journal of Materials Processing Technology. 2006;174(1-3):277-285. [Link] [DOI:10.1016/j.jmatprotec.2006.02.001]
Eshtayeh MM, Hrairi M, Mohiuddin AK. Clinching process for joining dissimilar materials: State of the art. The International Journal of Advanced Manufacturing Technology. 2016;82(1-4):179-195. [Link] [DOI:10.1007/s00170-015-7363-0]
Lambiase F. Influence of process parameters in mechanical clinching with extensible dies. International Journal of Advanced Manufacturing Technology. 2013;66(9-12):2123-31. [Link] [DOI:10.1007/s00170-012-4486-4]
Lee CJ, Lee SK, Kim BM, Ko DC. Failure mode dependent load bearing characteristics of mechanical clinching under mixed mode loading condition. Procedia Engineering. 2017;207:938-943. [Link] [DOI:10.1016/j.proeng.2017.10.855]
Roux E, Bouchard PO. Kriging metamodel global optimization of clinching joining processes accounting for ductile damage. Journal of Materials Processing Technology. 2013;213(7):1038-1047. [Link] [DOI:10.1016/j.jmatprotec.2013.01.018]
Jayasekara V, Min KH, Noh JH, Kim MT, Seo JM, Lee HY, et al. Rigid-plastic and elastic-plastic finite element analysis on the clinching joint process of thin metal sheets. Metals and Materials International. 2010;16(2):339-347. [Link] [DOI:10.1007/s12540-010-0427-7]
Jagtap KR, Ghorpade SY, Chopade SE. Finite Element Analysis of Mechanical Clinching Process. Materials Today: Proceedings. 2017;4(8):8104-8110. [Link] [DOI:10.1016/j.matpr.2017.07.150]
Mucha J. The analysis of lock forming mechanism in the clinching joint. Materials & Design. 2011;32(10):4943-4954. [Link] [DOI:10.1016/j.matdes.2011.05.045]
Han X, Zhao S, Liu C, Chen C, Xu F. Optimization of geometrical design of clinching tools in clinching process with extensible dies. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2017;231(21):3889-3897. [Link] [DOI:10.1177/0954406216660336]
Balawender T. Experimental investigation of clinch joining process. Acta Mechanica Slovaca. 2012;16(1):52-56. [Link] [DOI:10.21496/ams.2012.006]
Lambiase F, Di Ilio A. Optimization of the clinching tools by means of integrated FE modeling and artificial intelligence techniques. Procedia Cirp. 2013;12:163-168. [Link] [DOI:10.1016/j.procir.2013.09.029]
Eshtayeh M, Hrairi M. Multi objective optimization of clinching joints quality using Grey-based Taguchi method. International Journal of Advanced Manufacturing Technology. 2016;87(1-4):233-249. [Link] [DOI:10.1007/s00170-016-8471-1]
Wen T, Wang H, Yang C, Liu LT. On a reshaping method of clinched joints to reduce the protrusion height. International Journal of Advanced Manufacturing Technology. 2014;71(9-12):1709-1715. [Link] [DOI:10.1007/s00170-014-5612-2]
Han X, Zhao S, Chen C, Liu C, Xu F. Optimization of geometrical design of clinching tools in flat-clinching. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2017;231(21):4012-4021. [Link] [DOI:10.1177/0954406216660335]
Mori K, Abe Y, Kato T. Mechanism of superiority of fatigue strength for aluminium alloy sheets joined by mechanical clinching and self-pierce riveting. Journal of Materials Processing Technology. 2012;212(9):1900-1905. [Link] [DOI:10.1016/j.jmatprotec.2012.04.017]
He X, Liu F, Xing B, Yang H, Wang Y, Gu F, et al. Numerical and experimental investigations of extensible die clinching. The International Journal of Advanced Manufacturing Technology. 2014;74(9-12):1229-1236. [Link] [DOI:10.1007/s00170-014-6078-y]
Abe Y, Kato T, Mori KI, Nishino S. Mechanical clinching of ultra-high strength steel sheets and strength of joints. Journal of Materials Processing Technology. 2014;214(10):2112-2118. [Link] [DOI:10.1016/j.jmatprotec.2014.03.003]
Eshteyah M, Hrairi M, Dawood MS, Mohiuddin AK. Finite element modeling of clinching process for joining dissimilar materials. Advanced Materials Research. 2015;1115:109-112. [Link] [DOI:10.4028/www.scientific.net/AMR.1115.109]