مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مدل‌سازی ریاضی و تحلیل حساسیت پارامترهای موثر بر دمای فرآیند سوراخ‌کاری استخوان کورتیکال به کمک نوسان‌های فراصوتی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران
2 دانشکده مهندسی مکانیک، دانشگاه صنعتی اراک، اراک، ایران
چکیده
استفاده از نوسان‌های فراصوتی برای کاهش دما در سوراخ‌کاری استخوان یکی از مهم‌ترین فرآیندهای نوین است که مورد توجه محققین حوزه جراحی استخوان قرار گرفته است. لذا بررسی رفتار دما در فرآیند سوراخ‌کاری استخوان به کمک نوسان‌های فراصوتی و پیش‌بینی رفتار دما نقش مهمی در بهبود استفاده از این روش در عمل‌های جراحی ارتوپدی دارد. در این پژوهش با استفاده از روش سطح پاسخ و تحلیل آماری اثر پارامترهای فرآیند روی تغییرات دما مورد مطالعه قرار گرفته است. تحلیل آماری برای بررسی اثر هر یک از متغیرهای ورودی شامل سرعت دورانی ابزار، سرعت پیشروی ابزار، دامنه نوسان فراصوتی و برهم‌کنش آنها روی دما انجام شده است. همچنین با استفاده از روش آماری حساسیت سوبل مقدار تاثیر و حساسیت هر یک از متغیرهای ورودی روی دما مورد مطالعه قرار گرفته است. نتایج به‌دست آمده نشان می‌دهد که استفاده از نوسان‌های فراصوتی باعث کاهش دما می‌شود و سرعت دورانی (۴۸%)، دامنه نوسان (۳۳%) و سرعت پیشروی (۱۹%) به ترتیب بیشترین اثر را بر دمای فرآیند سوراخ‌کاری به کمک نوسان‌های فراصوتی داشته‌اند. استفاده از نوسان‌های فراصوتی می‌تواند باعث کاهش وابستگی دمای فرآیند به سرعت پیشروی شده و در نتیجه امکان انجام جراحی در زمان کوتاه‌تری را ممکن می‌سازد. کمینه مقدار دما (حدود C°۳۷) در سرعت دورانی ۵۰۰دور بر دقیقه و سرعت پیشروی ۲۰میلی‌متر بر دقیقه و دامنه نوسان ۱۵میکرومتر حاصل شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Mathematical Modeling and Sensitivity Analysis of Effective Parameters on Temperature in Ultrasonic Assisted Drilling of Cortical Bone

نویسندگان English

A. Pak 1
H. Yaghooti 2
V. Tahmasbi 2
1 Engineering Faculty, Bu-Ali Sina University, Hamedan, Iran
2 Mechanical Engineering Faculty, Arak University of Technology, Arak, Iran
چکیده English

The use of ultrasonic vibrations to reduce the temperature in bone drilling is one of the most important advanced processes that has attracted the attention of bone surgeons. Therefore, the study of temperature behavior in the ultrasonic-assisted drilling process and the prediction of temperature behavior have an important effect on improving the use of this method in orthopedic surgery. In this research, the influence of process parameters on change in the temperature was studied using response surface methodology and data analysis. Data analysis was carried out to find the effect of process factors such as rotational speed, feed speed, and ultrasonic vibrational amplitude and their interaction on the temperature. Moreover, using the statistical method of Sobol sensitivity, the effect, and sensitivity of each input factor on temperature were studied. The results show that the use of ultrasonic vibrations reduces the temperature, and rotational speed (%48), vibrational amplitude (%33) and feed speed (%19) had the greatest effect on temperature in ultrasonic-assisted bone drilling, respectively. As a result, the use of ultrasonic vibration can reduce the dependency of process temperature on the feed speed, and thus make it possible to perform surgery in a shorter time. The minimum temperature is 37°C at the rotational speed of 500rpm and the feed speed of 20mm/min and the vibration amplitude of 15μm.

کلیدواژه‌ها English

Modeling
Temperature
Bone drilling
Ultrasonic Vibration
response surface methodology
Sobol sensitivity analysis
Augustin G, Zigman T, Davila S, Udilljak T, Staroveski T, Brezak D, Babic S. Cortical bone drilling and thermal osteonecrosis. Clinical biomechanics. 2012;27(4):313-325. [Link] [DOI:10.1016/j.clinbiomech.2011.10.010]
Sui J, Sugita N, Ishii K, Harada K, Mitsuishi M. Mechanistic modeling of bone-drilling process with experimental validation. Journal of Materials Processing Technology. 2014;214(4):1018-1026. [Link] [DOI:10.1016/j.jmatprotec.2013.11.001]
Tai BL, Palmisano AC, Belmont B, Irwin TA, Holmes J, Shih AJ. Numerical evaluation of sequential bone drilling strategies based on thermal damage. Medical Engineering & Physics. 2015;37(9):855-861. [Link] [DOI:10.1016/j.medengphy.2015.06.002]
Dahotre NB, Joshi S. Machining of bone and hard tissues. New York City: Springer; 2016. [Link] [DOI:10.1007/978-3-319-39158-8]
Brehl DE, Dow TA. Review of vibration-assisted machining. Precision Engineering. 2008;32(3):153-172. [Link] [DOI:10.1016/j.precisioneng.2007.08.003]
Khademi V. Ultrasonic assisted bone drilling [Dissertation]. Tehran: Sharif University of Technology; 2008. [Persian] [Link]
Khademi V, Akbari J, Farahmand F, Masoumi E. S-46 experimental investigation of ultrasonic-assisted bone drilling. Journal of Biomechanics. 2010;43(1):S47-S48. [Link] [DOI:10.1016/S0021-9290(10)70099-3]
Alam K, Silberschmidt VV. Analysis of temperature in conventional and ultrasonically-assisted drilling of cortical bone with infrared thermography. Technology and Health Care. 2014;22(2):243-252. [Link] [DOI:10.3233/THC-140813]
Alam K, Khan M, Silberschmidt V. Finite element modeling and analysis of ultrasonically-assisted drilling of bone. Proceedings of the 10th International Conference on Computer Modeling and Simulation. California: ACM Digital Library; 2018. pp. 216-220. [Link] [DOI:10.1145/3177457.3177500]
Alam K, Ahmed N, Silberschmidt VV. Comparative study of conventional and ultrasonically-assisted bone drilling. Technology Health Care. 2014;22(2):253-262. [Link] [DOI:10.3233/THC-140814]
Alam K, Hassan E, Bahadur I. Experimental measurements of temperatures in ultrasonically assisted drilling of cortical bone. Biotechnology & Biotechnological Equipment. 2015;29(4):753-757. [Link] [DOI:10.1080/13102818.2015.1034176]
Alam K, Mitrofanov AV, Silberschmidt VV. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone. Medical Engineering & Physics. 201;33(2):234-239. [Link] [DOI:10.1016/j.medengphy.2010.10.003]
Wang Y, Cao M, Zhao X, Zhu G, McClean C, Zhao Y, et al. Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone. Medical Engineering & Physics. 2014;36(11):1408-1415. [Link] [DOI:10.1016/j.medengphy.2014.04.007]
Shakouri E, Sadeghi MH, Maerefat M, Karafi MR, Memarpour M. Experimental and analytical investigation of thrust force in ultrasonic assisted drilling of bone. Modares Mechanical Engineering. 2014;14(6):194-200. [Persian] [Link]
Shakouri E, Sadeghi MH, Karafi MR, Maerefat M, Farzin M. An in vitro study of thermal necrosis in ultrasonic-assisted drilling of bone. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2015;229(2):137-149. [Link] [DOI:10.1177/0954411915573064]
Shakouri E, Sadeghi MH, Karafi M, Farzin M. Effect of rotatory-vibrational bone drilling in lowering thermal necrosis (an animal study). Iranian Journal of Orthopaedic Surgery. 2014;12(2):53-59. [Persian] [Link]
Gupta V, Pandey PM. Experimental investigation and statistical modeling of temperature rise in rotary ultrasonic bone drilling. Medical Engineering & Physics. 2016;38(11):1330-1338. [Link] [DOI:10.1016/j.medengphy.2016.08.012]
Gupta V, Pandey PM, Gupta RK, Mridha AR. Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017;231(3):189-196. [Link] [DOI:10.1177/0954411916688500]
Singh G, Jain V, Gupta D, Ghai A. Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method. Journal of the Mechanical Behavior of Biomedical Materials. 2016;62:355-365. [Link] [DOI:10.1016/j.jmbbm.2016.05.015]
Vashishth D, Tanner K, Bonfield W. Contribution, development and morphology of microcracking in cortical bone during crack propagation. Journal of Biomechanics. 2000;33(9):1169-1174. [Link] [DOI:10.1016/S0021-9290(00)00010-5]
Pandey RK, Panda SS. Multi-performance optimization of bone drilling using Taguchi method based on membership function. Measurement. 2015;59:9-13. [Link] [DOI:10.1016/j.measurement.2014.09.038]
Wang W, Shi Y, Yang N, Yuan X. Experimental analysis of drilling process in cortical bone. Medical Engineering & Physics. 2014;36(2):261-266. [Link] [DOI:10.1016/j.medengphy.2013.08.006]
Pandey RK, Panda SS. Optimization of bone drilling using Taguchi methodology coupled with fuzzy based desirability function approach. Journal of Intelligent Manufacturing. 2015;26(6):1121-1129. [Link] [DOI:10.1007/s10845-013-0844-9]
Pandey RK, Panda SS. Optimization of multiple quality characteristics in bone drilling using grey relational analysis. Journal of Orthopaedics. 2015;12(1):39-45. [Link] [DOI:10.1016/j.jor.2014.06.003]
Staroveski T, Brezak D, Udiljak T. Drill wear monitoring in cortical bone drilling. Medical Engineering & Physics. 2015;37(6):560-566. [Link] [DOI:10.1016/j.medengphy.2015.03.014]
Matthews LS, Hirsch C. Temperatures measured in human cortical bone when drilling. The Journal of Bone and Joint Surgery. 1972;54(2):297-308. [Link] [DOI:10.2106/00004623-197254020-00008]
Hou TH, Su CH, Liu WL. Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm. Powder Technology. 2007;173(3):153-162. [Link] [DOI:10.1016/j.powtec.2006.11.019]
Nekahi A, Dehghani K. Modeling the thermomechanical effects on baking behavior of low carbon steels using response surface methodology. Materials & Design. 2010;31(8):3845-3851. [Link] [DOI:10.1016/j.matdes.2010.03.038]
Moradi M, Ghoreishi M, Frostevarg J, Kaplan AF. An investigation on stability of laser hybrid arc welding. Optics and Lasers in Engineering. 2013;51(4):481-487. [Link] [DOI:10.1016/j.optlaseng.2012.10.016]
Moradi M, Ghoreishi M, Torkamany M. Modelling and optimization of Nd: YAG laser and tungsten inert gas (TIG) hybrid welding of stainless steel. Lasers in Engineering (Old City Publishing). 2014;27(3):211-230. [Link]
Montgomery DC. Design and Analysis of Experiments. 8th edition. New Jersey: John Wiley & Sons; 2012. [Link]
Sobol IM. Sensitivity estimates for nonlinear mathematical models. MMCE. 1993;1(4):407-414. [Link]
Sobol IM. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation. 2001;55(1-3):271-280. [Link] [DOI:10.1016/S0378-4754(00)00270-6]
Tahmasbi V, Ghoreishi M, Zolfaghari M. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2017;231(11):1012-1024. [Link] [DOI:10.1177/0954411917726098]
Tahmasbi V, Ghoreishi M, Zolfaghari M. Sensitivity analysis of temperature and force in robotic bone drilling process using Sobol statistical method. Biotechnology & Biotechnological Equipment. 2018;32(1):130-141. [Link] [DOI:10.1080/13102818.2017.1403863]
Knight WA, Boothroyd G. Fundamentals of metal machining and machine tools. 3rd edition. Florida: CRC Press; 2005. [Link]
Altintas Y. Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design. 2nd edition. Cambridge: Cambridge University Press; 2012. [Link]
Tahmasbi V, Ghoreishi M, Zolfaghari M. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone. Part H: Journal of Engineering in Medicine. 2017;231(11):1012-1024. [Link] [DOI:10.1177/0954411917726098]
Zolfaghari M, Ghoreishi M, Tahmasbi V. Temperature in bone drilling process: Mathematical modeling and Optimization of effective parameters. International Journal of Engineering-Transactions. 2016;29(7):946-953. [Link] [DOI:10.5829/idosi.ije.2016.29.07a.09]