مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

عملکرد حرارتی و الکتریکی مدول فتوولتائیک و کلکتور خورشیدی ترکیبی فتوولتائیک-حرارتی برای سیال آب

نوع مقاله : پژوهشی اصیل

نویسندگان
دانشکده مکانیک، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
چکیده
هدف از این مقاله، مقایسه توان الکتریکی خروجی مدول فتوولتائیک (PV) و کلکتور ترکیبی فتوولتائیک- حرارتی (PV/T) با سیال آب است. راندمان الکتریکی مدول فتوولتائیک با افزایش دمای سطح آن به‌شدت کاهش می‌یابد. کلکتور ترکیبی فتوولتائیک- حرارتی شامل یک مدول فتوولتائیک است که یک کلکتور حرارتی به پشت آن متصل شده است. با گردش یک سیال با دمای ورودی پایین، حرارت از مدول فتوولتائیک دفع شده و راندمان الکتریکی آن افزایش می‌یابد. در این تحقیق، ابتدا مدل‌سازی حرارتی مدول فتوولتائیک و کلکتور PV/T با سیال آب به‌صورت تئوری و به‌کمک قانون اول ترمودینامیک انجام شده است. در ادامه برای اعتبارسنجی به نتایج تئوری، یک نمونه کلکتور ترکیبی فتوولتائیک- حرارتی بدون پوشش نوع مارپیچی با سیال آب طراحی و ساخته شد و در مدت سه روز تحت آزمایش قرار گرفت و نتایج حاصل از آن با مدول فتوولتائیک شاهد مقایسه شد. محاسبات تئوری به‌کمک نرم‌افزار متلب انجام گرفت و نتایج به‌دست‌آمده از آن، مطابقت خوبی را با آزمون تجربی مدول PV و کلکتور PV/T نشان داد. نتایج این تحقیق بهبود عملکرد الکتریکی کلکتور PV/T نسبت به مدول فتوولتائیک شاهد را نشان می‌دهد؛ به‌طوری که راندمان الکتریکی آن نسبت به مدول PV شاهد، حداکثر ۶% افزایش یافته است. همچنین با درنظرگرفتن مساحت کوچک کلکتور PV/T، دمای آب در خروجی حدود °C۵ بیشتر شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Thermal and Electrical Performance of PV Module and Solar PV/T for Water Collector

نویسندگان English

S.A. Behmoonesi
F. Jafarkazemi
Mechanic Faculty, South Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده English

The aim of this paper is to compare the electric power output of the photovoltaic Module (PV) and photovoltaic-thermal water collector (PV/T). The electrical efficiency of photovoltaic Modules is greatly reduced by increasing their surface temperature. The hybrid photovoltaic-thermal collector consists of a PV Module with a thermal collector attached behind it. The circulating fluid in the collector removes heat from the module and increases its electrical efficiency. In the first part of this paper, a theoretical analysis of a liquid PV/T collector is made based on thermal modeling using the first law of thermodynamics. An unglazed hybrid photovoltaic-thermal collector with serpentine tubes has been designed and manufactured to validate the theoretical results. Then the collector has been tested for three days and results have been compared with a sample photovoltaic module. The theoretical calculations were performed using Matlab software and its results showed good agreement with experimental results. Our finding shows a maximum increase of 6% in the electrical efficiency of PV/T in comparison to the PV module. At the same time, the water temperature has increased by 5°C.

کلیدواژه‌ها English

Solar Collector
Photovoltaic/Thermal Collector
PV/T
Solar Energy
Kim JH, Kim JT. The experimental performance of an unglazed PVT collector with two different absorber types. International Journal of Photoenergy. 2012;2012:312168. [Link] [DOI:10.1155/2012/312168]
Wilson E. Theoretical and operational thermal performance of a 'wet'crystalline silicon PV module under Jamaican conditions. Renewable Energy. 2009;34(6):1655-1660. [Link] [DOI:10.1016/j.renene.2008.10.024]
Tripanagnostopoulos Y, Nousia Th, Souliotis M, Yianoulis P. Hybrid photovoltaic/thermal solar systems. Solar Energy. 2002;72(3):217-234. [Link] [DOI:10.1016/S0038-092X(01)00096-2]
Prakash J. Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water. Energy Conversion and Management. 1994;35(11):967-972. [Link] [DOI:10.1016/0196-8904(94)90027-2]
Huang BJ, Lin TH, Hung WC, Sun FS. Performance evaluation of solar photovoltaic/thermal systems. Solar Energy. 2001;70(5):443-448. [Link] [DOI:10.1016/S0038-092X(00)00153-5]
Dubey S, Tiwari GN. Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater. Solar Energy. 2008;82(7):602-612. [Link] [DOI:10.1016/j.solener.2008.02.005]
Zondag HA, de Vries DW, van Helden WGJ, van Zolingen RJC, van Steenhoven AA. The yield of different combined PV-thermal collector designs. Solar Energy. 2003;74(3):253-269. [Link] [DOI:10.1016/S0038-092X(03)00121-X]
Bergene T, Løvvik OM. Model calculations on a flat-plate solar heat collector with integrated solar cells. Solar Energy. 1995;55(6):453-462. [Link] [DOI:10.1016/0038-092X(95)00072-Y]
Duffie JA, Beckman WA. Solar engineering of thermal processes. Hoboken: John Wiley & Sons; 2006. [Link]
Ji J, Lu JP, Chow TT, He W, Pei G. A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation. Applied Energy. 2007;84(2):222-237. [Link] [DOI:10.1016/j.apenergy.2006.04.009]
Sandnes B, Rekstad J. A photovoltaic/thermal (PV/T) collector with a polymer absorber plate, Experimental study and analytical model. Solar Energy. 2002;72(1):63-73. [Link] [DOI:10.1016/S0038-092X(01)00091-3]
Hottel H, Whillier A. Evaluation of flat-plate solar collector performance. SERI Photovoltaics and Insolation Measurements Workshop, 30 June 1985, Bellingham, United States. Bellingham: WA; International Society for Optical Engineering; 1955. [Link]
Zondag HA, de Vries DW, van Helden WGJ, van Zolingen RCJ, van Steenhoven AA. The thermal and electrical yield of a PV-thermal collector. Solar Energy. 2002;72(2):113-128. [Link] [DOI:10.1016/S0038-092X(01)00094-9]
Chow TT, He W, Chan ALS, Fong KF, Lin Z, Ji J. Computer modeling and experimental validation of a building-integrated photovoltaic and water heating system. Applied Thermal Engineering. 2008;28(11-12):1356-1364. [Link] [DOI:10.1016/j.applthermaleng.2007.10.007]
Chow TT, Pei G, Fong KF, Lin Z, Chan ALS, Ji J. Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover. Applied Energy. 2009;86(3):310-316. [Link] [DOI:10.1016/j.apenergy.2008.04.016]
Tiwari A, Sodha MS. Performance evaluation of solar PV/T system: An experimental validation. Solar Energy. 2006;80(7):751-759. [Link] [DOI:10.1016/j.solener.2005.07.006]
Dubey S, Tay AAO. Testing of two different types of photovoltaic-thermal (PVT) modules with heat flow pattern under tropical climatic conditions. Energy for Sustainable Development. 2013;17(1):1-12. [Link] [DOI:10.1016/j.esd.2012.09.001]
Sarhaddi F, Farahat S, Ajam H, Behzadmehr A, Adeli MM. An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Applied Energy. 2010;87(7):2328-2339. [Link] [DOI:10.1016/j.apenergy.2010.01.001]
Sobhnamayan F, Sarhaddi F, Alavi MA, Farahat S, Yazdanpanahi J. Optimization of a solar photovoltaic thermal (PV/T) water collector based on exergy concept. Renewable Energy. 2014;68:356-365. [Link] [DOI:10.1016/j.renene.2014.01.048]
Fudholi A, Sopian K, Yazdi MH, Ruslan MH, Ibrahim A, Kazem HA. Performance analysis of photovoltaic thermal (PVT) water collectors. Energy conversion and management. 2014;78:641-651. [Link] [DOI:10.1016/j.enconman.2013.11.017]
Ben Cheikh El Hocine H, Touafek K, Kerrour F. Theoretical and experimental studies of a new configuration of photovoltaic-thermal collector. Journal of Solar Energy Engineering. 2017;139(2):021012. [Link] [DOI:10.1115/1.4035328]
Kazemian A, Hosseinzadeh M, Sardarabadi M, Passandideh-Fard M. Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: An experimental study. Solar Energy. 2018;173:1002-1010. [Link] [DOI:10.1016/j.solener.2018.07.051]
Singh I, Singh D, Singh M. Thermal modeling and performance evaluation of photovoltaic thermal (PV/T) systems: A parametric study. International Journal of Green Energy. 2019;16(6):483-489. [Link] [DOI:10.1080/15435075.2019.1584103]
Kazem HA. Evaluation and analysis of water-based photovoltaic/thermal (PV/T) system. Case Studies in Thermal Engineering. 2019;13:100401. [Link] [DOI:10.1016/j.csite.2019.100401]
Agrawal B, Tiwari GN. Building integrated photovoltaic thermal systems: For sustainable developments (RSC Energy Series). London: Royal Society of Chemistry; 2010. [Link]
Tiwari A, Sodha MS. Performance evaluation of hybrid PV/thermal water/air heating system: A parametric study. Renewable Energy. 2006;31(15):2460-2474. [Link] [DOI:10.1016/j.renene.2005.12.002]
Tiwari A, Sodha MS. Parametric study of various configurations of hybrid PV/thermal air collector: Experimental validation of theoretical model. Solar Energy Materials and Solar Cells. 2007;91(1):17-28. [Link] [DOI:10.1016/j.solmat.2006.06.061]
Sarhaddi F, Farahat S, Ajam H, Behzadmehr A. Exergetic performance assessment of a solar photovoltaic thermal (PV/T) air collector. Energy and Buildings. 2010;42(11):2184-2199. [Link] [DOI:10.1016/j.enbuild.2010.07.011]
Ji J, Han J, Chow TT, Han C, Lu J, He W. Effect of flow channel dimensions on the performance of a box-frame photovoltaic/thermal collector. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2006;220(7):681-688. [Link] [DOI:10.1243/09576509JPE316]
Tiwari GN, Dubey S. Fundamentals of photovoltaic modules and their applications. London: Royal Society of Chemistry; 2010. [Link]
Zhang HF, Lavan Z. Thermal performance of a serpentine absorber plate. Solar Energy. 1985;34(2):175-177. [Link] [DOI:10.1016/0038-092X(85)90175-6]
Bejan A. Convection heat transfer. Hoboken: John wiley & Sons; 2013. [Link] [DOI:10.1002/9781118671627]
Othman MY, Hamid SA, Tabook MAS, Sopian K, Roslan MH, Ibarahim Z. Performance analysis of PV/T Combi with water and air heating system: An experimental study. Renewable Energy. 2016;86:716-722. [Link] [DOI:10.1016/j.renene.2015.08.061]
Kalogirou SA. Solar energy engineering: Processes and systems. Cambridge: Academic Press;2009. [Link]
Armstrong S, Hurley WG. A thermal model for photovoltaic panels under varying atmospheric conditions. Applied Thermal Engineering. 2010;30(11-12):1488-1495. [Link] [DOI:10.1016/j.applthermaleng.2010.03.012]
Dubey S, Sandhu GS, Tiwari GN. Analytical expression for electrical efficiency of PV/T hybrid air collector. Applied Energy. 2009;86(5):697-705. [Link] [DOI:10.1016/j.apenergy.2008.09.003]
Moffat RJ. Using uncertainty analysis in the planning of an experiment. Journal of Fluids Engineering. 1985;107(2):173-178. [Link] [DOI:10.1115/1.3242452]