مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

پاسخ عملکردی موتور اشتعال جرقه‌ای به افزودن گاز طبیعی به بنزین در شرایط فقیرسوز با نسبت تراکم 10

نوع مقاله : پژوهشی اصیل

نویسندگان
گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران
چکیده
معایب استفاده از دو سوخت بنزین و گاز طبیعی به‌صورت تک‌سوز در موتورهای اشتعال جرقه‌ای، محققان را بر آن داشته است که با استفاده از ترکیب آن دو در موتور، بر مزیت‌های احتراق از جمله بهبود در عملکرد و کاهش در آلایندگی بیافزایند. از طرف دیگر استفاده از حالت فقیرسوز در موتور می‌تواند موجب کاهش آلاینده‌های خروجی شود. در کار حاضر، ترکیب‌های مختلف بنزین- گاز طبیعی با سوخت غالب بنزین شامل ۱۰۰، ۸۷/۵، ۷۵ و ۶۲/۵ درصد وزنی بنزین و مابقی گاز طبیعی (نام‌گذاری‌شده به‌ترتیب ۱۰۰G، ۸۷/۵G، ۷۵G و ۶۲/۵G) در حالت فقیرسوز با نسبت هم‌ارزی ۰/۹ بررسی شد. در سرعت rpm۱۸۰۰ و نسبت تراکم ۱۰ به‌ازای هر ترکیب در آوانس‌های مختلف، تغییرات فشار داخل سیلندر، ۳۵۰ سیکل پشت سر هم از یک موتور پژوهشی تک‌سیلندر ذخیره شد. این داده‌های خام ابتدا پردازش و از نتایج آنها، آوانس بهینه عاری از کوبش هر ترکیب استخراج شد. سپس عملکرد چهار ترکیب در آوانس بهینه مربوط مورد ارزیابی و مقایسه قرار گرفت. نتایج نشان داد که با افزایش حضور گاز طبیعی در ترکیب میزان آلاینده CO تقلیل و مقدار HC ابتدا افزایش و سپس سیر کاهشی داشت. میزان NOx با افزایش حضور گاز طبیعی روند افزایشی داشت و در مجموع عملکرد ۷۵G در حالت فقیر سوز نسبت به ۱۰۰G و سایر ترکیب‌ها بهتر بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Performance Response of a Spark Ignition Engine to Adding Natural Gas to Gasoline on Lean-Burn Condition in 10 Compression Ratio

نویسندگان English

S.K. Yekani
E. Abdi Aghdam
F. Sadegh Moghanlou
Mechanical Engineering Department, Engineering Faculty, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده English

Considering the disadvantages of gasoline and natural gas as mono-fuel in SI engines has made the researchers improve the performance and reduce the pollutant as the advantages of the application of dual-fuel engines. On the other hand, lean-burn in the engine may lead to reduced pollutants. In the present study various mixtures of gasoline and natural gas with the gasoline as the dominant fuel, including 100, 87.5, 75 and 62.5% in weight-base gasoline and the rest natural gas (respectively named as G100, G87.5, G75, G62.5) in lean-burn condition with 0.9 as the equivalence ratio are investigated. At 1800rpm and 10 compression ratio, cylinder pressure variations of 350 successive cycles of each mixture were recorded using a single-cylinder research engine. First of all, the raw data were processed and the optimized knock-free advance for each individual mixture was determined. Later on, the performance of all four mixtures in the corresponding optimized advance was explored. The results revealed that by increasing the amount of natural gas in the mixture, the CO pollutant reduced however the amount of HC initially increased which was followed by a decreasing trend. The amount of NOx had a direct relation with the appearance of the natural gas. In the lean-burn condition, a better performance was observed for G75 in comparison with G100 and the other mixtures.

کلیدواژه‌ها English

SI engine
Lean-Burn
Pollutant
Dual Fuel
Kakaee AH, Paykani A. Research and development of natural-gas fueled engines in Iran. Renewable and Sustainable Energy Reviews. 2013;26:805-821. [Link] [DOI:10.1016/j.rser.2013.05.048]
Cho HM, Bang-Quan H. Spark ignition natural gas engines - a review. Energy Conversion and Management. 2007;48(2):608-618. [Link] [DOI:10.1016/j.enconman.2006.05.023]
Akansu SO, Dulger Z, Kahraman N, Veziroglu TN. Internal combustion engines fueled by natural gas- hydrogen mixtures. International Journal of Hydrogen Energy. 2004;29(14):1527-1539. [Link] [DOI:10.1016/j.ijhydene.2004.01.018]
Jahirul MI, Masjuki HH, Saidur R, Kalam MA, Jayed MH, Wazed MA. Comparative engine performance and emission analysis of CNG and gasoline in a retrofitted car engine. Applied Thermal Engineering. 2010;30(14-15):2219-2226. [Link] [DOI:10.1016/j.applthermaleng.2010.05.037]
Kalam MA, Masjuki HH. An experimental investigation of high performance natural gas engine with direct injection. Energy. 2011;36(5):3563-3571. [Link] [DOI:10.1016/j.energy.2011.03.066]
Rahim AA, Rosli Abdullah N. Effect of alcohol-gasoline blends (ethanol) on performance and emission of SI engine. ARPN Journal of Engineering and Applied Sciences. 2016;11(20):11898-11901. [Link]
Yua X, Guoa Z, Hea L, Donga W, Suna P, Shia W, et al. Effect of gasoline/n-butanol blends on gaseous and particle emissions from an SI direct injection engine. Fuel. 2018;229:1-10. [Link] [DOI:10.1016/j.fuel.2018.05.003]
Pipitone E, Beccari S. Performances improvement of a S.I. CNG bi-fuel engine by means of double-fuel injection. SAE Technical Paper. 2009 September. [Link] [DOI:10.4271/2009-24-0058]
Delpech V, Obiols J, Soleri D, Mispreuve L, Magere E, Kermarrec S. Towards an innovative combination of natural gas and liquid fuel injection in spark ignition engines. SAE International Journal of Fuels Lubricants. 2010;3(2):196-209. [Link] [DOI:10.4271/2010-01-1513]
Yontar AA, Doğu Y. 1-D modelling comparative study to evaluate performance and emissions of a spark ignition engine fuelled with gasoline and LNG. MATEC Web of Conferences. 2016;81:05003. [Link] [DOI:10.1051/matecconf/20168105003]
Putrasari Y, Praptijanto A, Nur A, Wahono B, Santoso WB. Evaluation of performance and emission of SI engine fuelled with CNG at low and high load condition. Energy Procedia. 2015;68:147-156. [Link] [DOI:10.1016/j.egypro.2015.03.243]
Ha JY, Park JS, Kang JH. Effects of the throttle opening ratio and the injection timing of CNG on the combustion characteristics of a DI engine. International Journal of Automotive Technology. 2010;11:11-17. [Link] [DOI:10.1007/s12239-010-0002-8]
Ran Z, Hariharan D, Lawler B, Mamalis S. Experimental study of lean spark ignition combustion using gasoline, ethanol, natural gas, and syngas. Fuel. 2019;235:530-537. [Link] [DOI:10.1016/j.fuel.2018.08.054]
Behrad R, Abdi Aghdam E. Experimental study of knocking phenomenon in different gasoline-naturalgas combinations with gasoline as the predominant fuel in a SI engine. Journal of Thermal Analysis and Calorimetry. 2019;139:2489-2497. [Link] [DOI:10.1007/s10973-019-08579-w]
Sarabi M, Abdi Aghdam E. Experimental analysis of in-cylinder combustion characteristics and exhaust gas emissions of gasoline-natural gas dual-fuel combinations in a SI engine. Journal of Thermal Analysis and Calorimetry.2019;139:3165-3178. [Link] [DOI:10.1007/s10973-019-08727-2]
Yekani k, Abdi Aghdam, Sadegh Moghanlou F. Experimental investigation of the performance response of a spark ignition engine to adding natural gas to gasoline in lean-burn condition. International Journal of Industrial Mathematics. 2019;11(4):307-317. [Link]
Heywood JB. Internal combustion engine fundamentals. New York: McGraw-Hill; 1988. [Link]
Abdi Aghdam E, Sarabi M, Mehrbod Khomeyrani M. Experimental study of laminar burning velocity for dual fuel (Gasoline-NG)-Air mixture using pressure record in a spherical combustion bomb at higher primary pressure. Fuel and Combustion. 2018;11(1):121-134. Persian. [Link]
Li T, Yin T, Wang B. A phenomenological model of knock intensity in spark-ignition engines. Energy Conversion and Management. 2017;148:1233-1247. [Link] [DOI:10.1016/j.enconman.2017.06.078]
Ahmadi Alni H. Study of knock intensity of gasoline-and natural gas-air Mixtures at 10 compression ratio in a CT300 research engine [dissertation]. Ardabil: University of Mohaghegh Ardabili; 2016. [Persian] [Link]
Wei HQ, Feng DQ, Pan MZ, Pan JY, Rao XK, Gao DZ. Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine. Applied Energy. 2016;175:346-355. [Link] [DOI:10.1016/j.apenergy.2016.05.029]
Wei H, Feng D, Pan J, Shao A, Pan M. Knock characteristics of SI engine fueled with n-butanol in combination with different EGR rate. Energy. 2017;118:190-196. [Link] [DOI:10.1016/j.energy.2016.11.134]