1. Waitz, I.A., Gauba, G., and Tzeng, Y.S. Combustors for Micro-Gas Turbine Engines. Journal of Fluids Engineering. 1998; 120: 109-117.
2. Davy, H., Trans, R., A computational fluid dynamics study of propane/air micro flame stability in a heat recirculation reactor. Soc. London, 1817; 107: 45-76.
3. Barnard, J. A., Bradley, J. N., Khoshnoudi, M., editors, Flame and combustion. 1st edition. University Publication Center, Tehran, 1989. [Persian]
4. Roshenry, C.G., Preliminary study of a Micro-Gas Turbine Engine. S. M. Thesis Massachusetts Institute of Technology. 1995.
5. Hua, J., Wu, M., and Kumar, K., Numerical simulation of the combustion of hydrogen – air mixture in micro – scaled chambers part II: CFD analysis for a micro-combustor. Chemical Engineering Science. 2005; 60: 3507-3515.
6. Kim, N.l., Maruta, K., A numerical study on propagation of premixed flames in small tubes, Combustion and Flame. 2006; 146: 283-301.
7. Peterson, R.B., Vanderhoff, J.A., A catalytic combustor for micro scale applications. Combustion Science and Technology Communications.2000; 1.
8. W. M. Yang, S. K. Chou, C. Shu et al., Combustion in micro-cylindrical combustors with and without a backward facing step. Applied Thermal Engineering. 2002; 22[16]: 1777–1787.
9. Raimondeau, S.N., Vlachos, D.G., Masel, R.I., Modeling of high temperature microburners. Proceedings of the Combustion Institute. 2002; 29: 901- 907.
10. Leach, T., Cadou, C., Effects of structural Heat conduction on the power Density of micro- combustors. AIAA. 2004.
11. Cadou, C., Leach, T., The Role of structural Heat exchange and Heat lose in the Design of Efficient silicon micro- combustors. 30th international symposium on combustion. 2004.
12. Maruta, K., Kataoka, T., Kim, N.l., Minaev, S., Fursenko, R., Characteristics of combustion in a narrow channel with a temperature gradient. Proceedings of the combustion institute. 2005; 30: 2429-2436.
13. Richecoeur, F., Kyritsis, D.C., Experimental study of flame stabilization in low Reynolds and Dean number flows in curved mesoscale ducts. Proceedings of the Combustion Institute. 2005; 30: 2419–2427.
14. Xu, B., Ju, Y., Experimental study of spinning combustion in a mesoscale divergent channel,” Proceedings of the Combustion Institute, 31, 2, 2007, pp. 3285–3292.
15. Fan, Y., Suzuki, Y., Kasagi, N., Experimental study of micro-scale premixed flame in quartz channels. Proceedings of the Combustion Institute. 2009; 32: 3083–3090.
16. Smyth, S.A., Kyritsis, D.C., Experimental determination of the structure of catalytic micro-combustion flows over small-scale flat plates for methane and propane fuel. Combustion and Flame.2012; 159: 802–816.
17. Sarrafan Sadeghi, S., Tabejamaat, S., Baigmohammadi M., et al., An experimental study of the effects of equivalence ratio, mixture velocity and nitrogen dilution on methane/oxygen pre-mixed flame dynamics in a meso-scale reactor. Energy Conversion and Management. 2014; 81: 169–183.
18. Li, X., Zhang, J., Jiang, L., Wang, X., Zhao, D., Combustion characteristics of non-premixed methane micro-jet flame in coflow air and thermal interaction between flame and micro tube. Applied Thermal Engineering. 2017; 112: 296–303.
19. Milcarek, R. J., Nakamura, H., Tezuka, T., Maruta, K., and Ahn, J., Microcombustion for micro-tubular flame-assisted fuel cell power and heat cogeneration. Journal of Power Sources. 2019; 413: 191-197.
20. Zarvandi, J., Tabejamaat, S., and Baigmohammadi, M., Numerical Simulation of the Effective Parameters on the Stability of Stoichiometric CH4/Air Premixed Combustion in a Micro-combustion Chamber. Fuel and Combustion. 2010; 6 [2]: 31-45.
21. Zarvandi, J., Tabejamaat, S., and Baigmohammadi, M., Numerical study of the effects of heat transfer methods on CH4/(CH4 + H2)-AIR pre-mixed flames in a micro-stepped tube. Energy. 2012; 44[1]: 396-409.
22. Sarrafan Sadeghi, S., An Experimental Study of the Micro-Combustion Chamber. Amirkabir University of Technology (Tehran Polytechnic). MSc thesis. Tehran, 2013.
23. Sarrafan Sadeghi, S., Tabejamaat, S., Baigmohammadi M., Laboratory test bed of micro-combustion in micro and meso scale reactor. Iran Patent 80027, 2013; 15: 07.
24. Sarrafan Sadeghi, S., Tabejamaat, S., Baigmohammadi M., and Zarvandi, J., An experimental study of the effects of equivalence ratio, mixture velocity and nitrogen dilution on methane/oxygen pre-mixed flame dynamics in a meso-scale reactor. Energy Conversion and Management. 2014; 81:169-183.
25. Baigmohammadi M., S., Tabejamaat, and Farsiani, Y., An experimental study of methane–oxygen–carbon dioxide premixed flame dynamics in non-adiabatic cylinderical meso-scale reactors with the backward facing step. Chemical Engineering and Processing: Process Intensification. 2015; 95: 105-123.
26. Baigmohammadi M., S., Tabejamaat, and Farsiani, Y., Experimental study of the effects of geometrical parameters, Reynolds number, and equivalence ratio on methane–oxygen premixed flame dynamics in non-adiabatic cylinderical meso-scale reactors with the backward facing step. Chemical Engineering Science. 2015; 132: 215-233.
27. Baigmohammadi M., S., Tabejamaat, and Faghani-Lamraski, M., Experimental study on the effects of mixture flow rate, equivalence ratio, oxygen enhancement, and geometrical parameters on propane-air premixed flame dynamics in non-adiabatic meso-scale reactors. Energy. 2017; 121: 657-675.
28. Kang, S. H., Baek, S. W., and Im, H. G., Effects of heat and momentum losses on the stability of premixed flames in a narrow channel. Combustion Theory and Modelling. 2006; 10[4]: 659–681.